

Overview of Micromegas R&D Work and Plans

Maxence Vandenbroucke (CEA/IRFU)

EIC meeting – Temple University – May 2015

Summary

- 1. The Micromegas History and Principles
- 2. Micromegas Technology development
- 3. The Electronics Development for Micromegas
- 4. Characterization of Micromegas Detectors at Saclay

Micromegas R&D overview - Maxence Vandenbroucke - EIC Meeting - 05/2015

- More robust (mesh is embedded in photoresist)
- Simplified mechanical structure
- Ability to use thin PCBs and produce different shapes (cylindrical detectors !)
- Ability to industrialize the process
- Cheap !!!

The Micromegas Principle

The Micromegas Principle – New Experiments

The Micromegas Principle – New Experiments

R&D on Micromegas

- Resistive Technologies
- Cylindrical Detectors
- Hybrid
- Micro-Bulk
- Multiplexed Micromegas

Resistive Micromegas

Resistive technology, why?

- -> To avoid discharges and obtain a higher gain in a safe and stable fashion
- -> Ageing
- -> High rate
- -> No Protection circuit (->better SNR)
- -> Larger Cluster Size (Possibility to use 2D readout)

<u>How ?</u>

- -> Resistive strips are laid on top of the copper strips above an insulator (kapton foil)
- -> This kapton foil with the resistive strips is produced using resistive ink and serigraphy
- -> Connection to ground is made with vias and silver paste
- -> The micro-mesh is put on top of the resistive layer using the bulk technology

Sections of a resistive Micromegas, perpendicular to the strips (left) and along the strips (right)

=> See results on CLAS12 Forward and Barrel

Cylindrical Micromegas

120° tile

<u>Goal :</u>

- -> Very Light Cylindrical 1D/2D Detectors
- -> Curvature down to 10 cm radius ok
- -> Resolution of 100 µm and 10ns
- -> Large size (~50 cm length)
- -> Operation in high magnetic field up to 5T (low drift space / high drift field)
- -> Unique geometry, good for full angle coverage

Micromegas R&D overview - Maxence Vandenbroucke - EIC Meeting - 05/2015

GEM + MM = Hybrid

Edrift

~600 V/cm

Hybrid technology, why?

-> Larger Cluster Size

-> Pixel Compatible

GEM

How?

-> To avoid discharges by sharing the

Gain between the Micromegas and the

-> GEM foil is held by frame and pillarlike spacers at 1-2 mm from the Micromegas Eamp Amplification Readout ~2 kV/mm gap readout electrodes 128 µm **Bulk PMM** PMM assembled **GEM foil**

Cathode

Drift

space

5 mm

Indin

Hybrid @ COMPASS - Results

CERN SPS BEAM :

100 to 200 GeV muons up $4x10^7 \mu/s$ 190 GeV hadrons up $10^7 h/s$

Detectors:

12 detectors in production 40x40cm active area detectors 1024 strips + 1024 pixels 20MHz integrated flux 5mm drift area, Ne+10%C2H6+10%CF4

<u>Material budget :</u>

0.319% X0 (Std MM: 0.287% X0, pixel GEM 0.4% to 0.7% X0) + GEM 0.067% X0 (0.035% X0 for GEM with 2µm of Cu)

<u>Performances :</u>

Micro-Bulk Micromegas

Micro-Bulk Micromegas :

- 50µm Kapton foil based detectors
- GEM-like technology with strips
- Small area

Now 2D readout :

- X/Y read/out with a single 50um foil
- Similar holes and pitch as previous Micro Bulk
- Low mass, Lower cost , better yield expected
- No charge sharing between X and Y pads

« Genetic » multiplexing

Read large area with a few channels using redanducy :

→ in most cases, a signal is recorded on at least 2 **adjacent** strips

particule

We can make use of this redundancy, and combine channels with strips in such a way that any given pair of electronic channels contains one and only one pair of adjacent strips.

The sequence of channels uniquely codes the position on the detector...

 \rightarrow the connection {channels}_n \leftrightarrow {strips}_p can be represented by a p-list of channel numbers

For n channels, there are a priori n(n-1)/2 unordered doublets combinations; thus one can equip a detector with at most p = n(n-1)/2+1 strips.

S. Procureur et al., NIM A729 (2013) 888 Licensed under patent # 12 62815

Genetic multiplexing: MultiGen Detectors

Micromegas R&D overview - Maxence Vandenbroucke - EIC Meeting - 05/2015

Genetic multiplexing: low-flux applications

- Homeland security / Detector characterization / Archeology
- Muon tomography for volcanology: requires large detectors with low consumption

first results with 80x80 cm² planes of scintillators (~1 cm resolution)

- Full scale tomography happening now with the water tower of Saclay ! (Watto)

Electronics development for Micromegas

• Two DAQ systems and Two different ASICS developed specificly for MPGDs

Fig. 1. Feminos application example.

DREAM (Dead-timeless Read-out Electronics ASIC for Micromegas)

DREAM ASIC

- Evolution of AFTER and APV25 chips
- 64 Channels / 512-cell deep analog memory per channel
- Tailored for high capacitance detectors (MPGDs)
- Dead-time free (Circular buffer)
- Low noise : 2100e- at 200 pF (cable+detector)
- 4 gain ranges: 60 fC, 120 fC, 240 fC, 1 pC
- 16 programmable peaking times: from 50 ns à 1 μ s
- Sampling rate: 1- 100 MHz

Front-End Unit cards

- 8 DREAM per Front-End Unit card (FEU) 8x64 = 512 channels
- 1 FEU can run in stand alone mode
- Up to 24 FEUs with a Trigger Clock Module (TCM)
- Connection to PC via 1Gbit Ethernet (RJ45) or/and optical fiber (2.5 Gbit)
- Has been tested with 20kHz of fully random trigger
- TCM card able to deal with internal and external trigger

One FEU DREAM

Online data correction / Self-triggering

Latest Micromegas Detectors for CLAS12 and ASACUSA

- Resistive disk detectors for CLAS12
- Barrel
 - CLAS12
 - ASACUSA

Detector characterization at Saclay : Cosmic Test Bench

Forward disk for CLAS12

- 6 Disks located after the target
- Resistive strips divided in 2 zone inner/outer
- 1024 strips, pitch 525 µm
- Deported electronics
- Dimensions: 430 mm diameter disk with a 50 mm diameter hole at the center
- High counting rate (10 MHz)
- High magnetic field (5 T)

Micromegas R&D overview - Maxence Vandenbroucke - EIC Meeting - 05/2015

Forward disk for CLAS12: Production

CLAS12 Barrel

- 1152 "C" strips
- Pitch from 0.67 to 0.33 mm
- 221 mm radius
- PCB thickness 100 µm
- Drift thickness 250 µm
- Drift Field 2.4kV on 3 mm gap

- PCB thickness 200 µm
- Drift thickness 250 µm
- Drift Field 2.4kV on 3 mm gap
- 0.37% of X0

CLAS12 Barrel : Geometry

- 3D probing machine measuring points :
 - 270 points on top (drift side)
 - 120 points under (readout side)

List of measured points							
	x	Y	Z				
PT-Arceau1_1	-3.588	231.995	-0.005				
PT-Arceau1_2	28.993	231.995	33.071				
PT-Arceau1_3	64.992	231.994	57.126				

CLAS12 Barrel : Geometry

CLAS12 Barrel Z : Performances

Small Radius Barrel Detectors for ASACUSA

- Tracker for anti-Hydrogen experiment.
- 2D metallic Micromegas
- Internal Layer R_{MIN} : 60cm x 85 mm radius
- External Layer R_{MAX} : 60cm x 95 mm radius
- Intermediate support pillars
- DREAM electronics (deported)
- MEC8 connectors and Hitachi cables from CLAS12
- 3D printed structure (white)
- Cutout flaps for a better deformation at the connector level
- Gas distribution through aluminum frame
- 0.87mm pitch: 250 longitudinal Z strips, 500 circulars C strips
- 4T magnetic field

Readout pattern (bot)

Small Radius Barrel Detectors for ASACUSA

• Characterization at Saclay :

- 6 Months of smooth data taking ! (technical paper submitted)
- Effect of the magnetic field

ASACUSA – MicroTPC

• MicroTPC algo uses the time info on multi-strip clusters to extrapolate the track angle

Micromegas R&D overview - Maxence Vandenbroucke - EIC Meeting - 05/2015

Conclusion

- The Micromegas technology has evolved a lot since 1996
- Recent R&D focused on cylindrical chambers, resistive readout, spark reduction technology and high-rate/low material detectors
- The DREAM based has proved to be fully functional and not too hard to use
- Cosmic rays test bench shared facility at Saclay has been extensively use this last year
- Production, assembly, and full characterization of :
 - MINOS TPC (2)
 - Pixel MM for COMPASS II (6)
 - Forward Det. For Clas12 (4)
 - Barrel for Clas12 (2Z, 2C)
 - GMT for Gbar (4)
 - AMT for ASACUSA (5)
 - Forward Tagger for CLAS12 (1)
 - MultiGen for M³ and Watto (5)

• Outlook :

- End of production / assembly for CLAS12
- Installation of the central tracker this summer at Jlab
- Muon Tomography experiment ongoing
- New run for ASACUSA
- DREAM Adaptation for the FGT
- Ready for new challenges !

Spares

Forward disk for CLAS12: issue with resistive ladders

- 2 pre-production detector tested, One not ok :
 - High current due to a contact in the active area (can't burn it with sparks)
 - Large impacted zone due to ladders
 - Drift electrode glued
- \Rightarrow Production detectors
 - \Rightarrow No ladders
 - \Rightarrow Re-openable design with screws

Before the current appaered

With current

\Rightarrow unefficiency regions are determined by the position of the contacts to the resistive film

Bulk Micromegas : Fabrication scheme

PCB nu équipé avec

Lamination

ses pistes ou pixel

Le pain

- First prototypes in 2004. Collaboration CERN/Irfu.
- The woven micro-mesh is laminated between two photosensitive layers → reduction of dead zones
- Large areas
- Robust, industrial process (printed circuit)

Curved Micromegas : Fabrication process

Segmentation and preparation

Gluing of additional ribs

Gluing of the side carbon ribs on circular shape

Electric leak test

Setting and gluing of drift plane

Test Bench DAQ – AFTER

AGET FEMINOS

Fig. 1. Feminos application example.

- 4 AGET per Front-End Card (FEC) 4x64 = 256 channels
- I FEC can run in stand alone mode
- D Up to 24 FECs with a Trigger Clock Module (TCM) 6144 ch.
- □ Connection to PC via 1Gbit Ethernet (RJ45)
- **TCM** card able to deal with internal and external trigger

One FEC FEMINOS

39

8

AGET vs. DREAM - Notes

- About Zero suppression, CM noise suppression, etc... both systems has these functionalities and more implemented in the control FPGA. (it is also possible to do everything offline of course)
- □ Readout software exists in both case at different level of development, but they work
- □ Slowcontrol software is ok too
- D Protection circuit : Micromegas-like one, possible to remove it but very dangerous.

• Connection to the detector :

- Both ASICs are not on the detector but connected via cables
- □ It is possible to make cards like the APV one but it has to developed.
- DREAM existing cables use MEC8 connector
- □ AGET uses ERNI on the FEC side (? on the detector side)
- D Power cables/supply : standard 12V, nothing particular
- Acquisition architecture, see next slides

GEMs vs. Micromegas

- Multiplication in the holes
- ~ 50% of electrons transferred
- Gain per layer a few 10's to 10³
- Low ion back flow (1%)
- Multistage structure \rightarrow gain 10⁵
- More fragile and more integration issues

- Multiplication between mesh and anode
- Stability of gain wrt gap
- Gain 10⁴-10⁵
- Low ion back flow (1%, down to 10⁻⁶)
- Robust
- Sparking unless resistive or preceded by a GEM foil for preamplification
- Smaller ultimate thickness (both in mm and X₀)
- Slightly more radiation resistant

FEE R&D for New Proposal

DREAM parameter

Parameter	Value		
Polarity of detector signal	Negative or Positive		
Number of channels	64		
External Preamplifier option	Yes, access to the filter or SCA inputs		
Charge measurement			
Input dynamic range/gain 🛛 🐒	50 fC; 100 fC; 200 fC; 600 fC, selectable per channel		
Output dynamic range	2V p-p		
I.N.L	< 2%		
Charge Resolution	> 8 bits		
Sampling			
Peaking time value	50 ns to 900 ns (16 values)		
Number of SCA Time bins	512		
Sampling Frequency (WCk) •	1 MHz to 50 MHz		
Triggering	*******		
Discriminator solution	Leading edge		
HIT signal	OR of the 64 discriminator outputs in LVDS level		
Threshold Range	5% or 17.5% of the input dynamic range		
I.N.L	< 5%		
Threshold value	(7-bit + polarity bit) DAC common to all channels		
Minimum threshold value	≥ noise		
Readout	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
Readout frequency	Up to 20 MHz		
Channel Readout mode	all channels excepted those disabled (statically)		
SCA cell Readout mode	Triggered columns only		
Test			
Calibration (current input mode)	1 channel among 64; external test capacitor		
Test (voltage input mode)	1 channel among 64; internal test capacitor (1/charge range)		
Functional (voltage input mode)	1, few or 64 channels; internal test capacitor/channel		
Trigger rate	Up to 20kHz (4 samples read/trigger).		
Counting rate	< 50 KHz 7 channel		
Power consumption	< 10 mW / channel -		

Table 1: Summary of the DREAM requirements.

C F

- Signals are continuously pre-amplified, shaped, sampled at 20-30 MHz and kept in the circular analog memory
 - Deep enough to sustain 16 µs trigger latency
- At each trigger 4 6 corresponding samples are readout and digitized
 - Readout does not disturb sampling
- Retained samples are digitally processed
 - Pedestal equalization online
 - Common noise subtraction online
 - Zero suppression online

Micromegas R&D overview -Maxence Vandenbroucke – EIC

AF 1001 F

. . . .

Measure charge and time – off-line

Courtesy: E. Delagnes

DREAM chip

- Tailored for detectors with high capacitances
 - ~30% less noise compared to the previous generation (after ASIC)
 - Depending on detector type ENC of 2000-2700 is expected
- Version 1 submitted
 - Added intermediate peaking times for more flexibility
 - Minor bugs corrected
 - D Packaged chips expected in May-June

DREAM-based electronics

- Evolution of AFTER and APV25 chips
- Tailored for high capacitance detectors (MPGDs)
- Dead-time free
- Low noise : 2100e-
- v0 chip validated in 2012
- Sample of v1 chip received summer 2013
- Full production of final revision in March 2014
- Gain in S/N up to 25% wrt previous chip generation
- Self-triggering capabilities (part of EIC R&D, successfully tested !)
- Front-end unit prototype received, tested, validated. 12 boards ordered (6000 channels)
- Production of 70 units for 2014 (part of which is for this proposal) Micromegas R&D overview - Maxence Vandenbroucke – EIC Meeting – 05/2015

First front-end prototype

Electronics ASIC for Micromegas

- Characteristics
 - 4 gain ranges: 60 fC, 120 fC, 240 fC, 1 pC
- 16 programmable peaking times: from 50 ns à 1 μ s
- Sampling rate: 1- 50 MHz
- • 512-cell deep analog memory per channel
 - Trigger pipeline of 16 μ s + derandomizing
- • Readout rate: 20 (40) MHz
- • 140-pin 0.4 mm package
 - Small 17 mm x 17 mm footprint
- • Adapted for different detector types

GEMs vs. Micromegas (2)

GEM: Sauli 1997

- COMPASS
- LHCb muon detector
- TOTEM telescope
- HBD (Hadron Blind Detector)
- NA49 (upgrade)
- X-ray polarimeter (XEUS)
- GEM TPC for LEGS, BONUS
- STAR FGT
- KLOE2 vertex detector
- OLYMPUS
- SuperBigBite (JLab/Hall A)
- CMS forward muon chambers
- and at the proposal/prototyping stage
- EIC R&D
- DarkLight phase-I
-

MM: Giomataris 1996

- COMPASS (1 & 2)
- NA48/KABES
- CAST (CERN Axial Solar Telescope)
- nTOF (neutron beam profile)
- Piccolo (in reactor core neutron measurement)
- **T2K TPC**

....

- JLab/CLAS12/MVT
- RIKEN/MINOS (exotic nuclei spectroscopy)
- ATLAS muon system upgrade

and at the proposal/prototyping stage

- ASACUSA (anti-H)
- HARPO (astrophysics)
- MIMAC (dark matter)
- FIDIAS & ACTAR (low-energy heavy ion)
- EIC R&D

CLAS12 Operating Conditions

Parameter	Barrel MVT	Forward MVT
Effective Gain	5000	3000
Gas mixture	Ar + 10% iC ₄ H ₁₀	Ne + 10% C ₂ H ₆
Conversion gap	3 mm	5 mm
Drift field	8 kV/cm (Z) et 4 kV/cm (C)	1 kV/cm
Lorentz Angle	20° (Z) et 40° (C)	0°
Fields ratio	5,5 (Z) et 9 (C)	~ 50
Transparency	40% (Z) et 50% (C)	100%
X ₀	0,3%	0,3%
Segmentation	Longitudinal in 3 parts	Annular in 3 parts
Maximum PCB size (capacitance)	45x43 cm² (16 nF / 3)	Φ 43 cm (12 nF / 3)
Particle rate / layer	4 MHz (incl. 1 MHz hadrons)	12 MHz (incl. 2 MHz hadrons)
Discharge rate/ mesh	1 Hz	1 Hz
Deadtime	< 2 %	< 2%
Detection efficiency	> 90%	> 95%
Pitch	540 μm (Ζ) et 270 μm (C)	500 μm
Spatial resolution	250 μm (Ζ) et 100 μm (C)	145 μm
Time resolution	10 ns	10 ns

ATLAS Micromegas small wheel project

Double-mesh simulations

Performed with GARFIELD

FGT Disk setup

DREAM :

- <u>Pros</u>:
 - Better than AGET with large detector (including cable) capacitance
 - Suitable for trigger rate >1kHz
 - Possibility to run with a threshold to issue a trigger (one threshold per ASIC)
 - Used by CLAS12 (Jlab compatibility will be developed)
- <u>Cons:</u>
 - All channels are always read when a trigger is issued
 - 40Mhz sampling frequency max
- AGET :
 - <u>Pros:</u>
 - Fancy trigger possibilities : one threshold per channel, Multiplicity information available at the ASIC stage
 - Possibility to readout only channels with signal
 - 100MHz sampling frequency max.
 - DREAM CHIP FrontEnd
 - Philadelphia, PA, June 04, 2014
 - Small det. Capa.
 - Suitable for trigger rate <1kHz

Double-mesh ion gate mode

THE HARPO (HERMETIC ARGON POLARIMETER) PROJECT

- Motivations: no γ-polarimeter sensitive above 1 MeV in space astronomy
 - Comology/New Physics: search for Lorentz Invariance Violation (LIV) sensitivity $\,\propto E^2$
 - Astrophysics: understand mechanic(s) in γ cosmic sources
- Instrumental method:
 - Use a Time Projection Chamber for Pair Production ($\gamma Z \rightarrow Ze^-e^+$) & Triplet Production ($\gamma e \rightarrow e^-e^+e^-$)
 - 3D reconstruction in a "thin" homogeneous pressurized argon-based gas mixture
- Innovation: new high-resolution & high sensitivity way to perform MeV-GeV γ-ray astronomy & for the first time polarimetry

EXOTIC NUCLEI (RIKEN, JAPAN)

Minos innovation

 <u>Improve energy</u> resolution for γ spectroscopy of knock-out reactions in thick target by using a TPC to localize the vertex.

Instrument design : 2010-2014

- H2 liquid target (SACM);
- Low-radius TPC;
- 3600 pads Micromegas endplate;
- AGET ASIC, FE & BE Electronics: evolution of T2K electronics;
- DAQ system .

TPC End-Plate & field cage element. Internal R= 4cm

Instrument operation 2014-

- 2 succesful experiment campaigns @Riken in 2014
- See A.M. Corsi's talk

AGET FE card

FEMINOS card

Minos inside the DALI spectrometer @ Riken

On-line screenshot of TPC events (SAMURAI 018)

Genetic multiplexing

from S. Procureur

Several possibilities to build the pattern, *i.e.* the

doublets channel #strip # \rightarrow build the *i*th block from 1+k.i [n] (idea from Raphaël Dupré)

11	22	3 ₃	44	5 ₅	6 ₆	7 ₇
1 ₈	3 ₉	5 ₁₀	7 ₁₁	2 ₁₂	4 ₁₃	6 ₁₄
1 ₁₅	4 ₁₆	7 ₁₇	3 ₁₈	6 ₁₉	2 ₂₀	5 ₂₁

\rightarrow idem, but simply use the first available	dha	nngel	33	44	5 ₅	6 ₆	7 ₇	8 ₈	9 ₉
		3 ₁₁	5 ₁₂	7 ₁₃	9 ₁₄	2 ₁₅	4 ₁₆	6 ₁₇	8 ₁₈
build almost all	1 ₁₉	4 ₂₀	7 ₂₁	2 ₂₂	5 ₂₃	824	3 ₂₅	6 ₂₆	9 ₂₇
	2 ₂₈	6 ₂₉	1 ₃₀	5 ₃₁	9 ₃₂	3 ₃₃	7 ₃₄		

- -> Then a few days later, a short appears between the micromesh and a resistive strip
- -> The short induced a large current on a resistive strip

-> This current propagates via the ladders toward the ground of the resistive strips creating this inefficiency pattern:

Investigation of the cause of the short

Some defects observed with the Mitutoyo along a noisy strip.

The defect has not been identified Observation of the current with infra-red camera made

Zoom on a part of the CLAS12 Barrel preseries #2 with thermal cam, with HV on and current of about 300 μA

List of detectors tested

10 CLAS12 & M-Cube detectors were tested in our cosmic bench

\rightarrow 9 resistive + 1 non resistive

Detector	experiment	resistive	Active area	manufacturer	year	Drift frame
Forward prototype	CLAS12	Hand, no ladder	R=20 cm	ELVIA	2013	Ероху
Forward preserie	CLAS12	Screen printing, ladders every 2 cm	R=18.5 cm	CERN	2014	?
Barrel preserie (x2)	CLAS12	Screen printing, ladders every 8 cm	45x37 cm ²	CERN	2014	Carbon ribs
Forward Tagger prototype	CLAS12	no	R=14.6 cm	CERN	2013	Ероху
MultiGen 2D (4x)	M-Cube	Screen printing with ladders	50x50 cm²	CERN	2014	Aluminum
MultiGen 2D	M-Cube	Screen printing with ladders	50x50 cm ²	CERN+ELVIA	2014	Aluminum

→ Detectors without current between resistive strips and mesh are perfectly fine...

