

Content

Run-15 summary

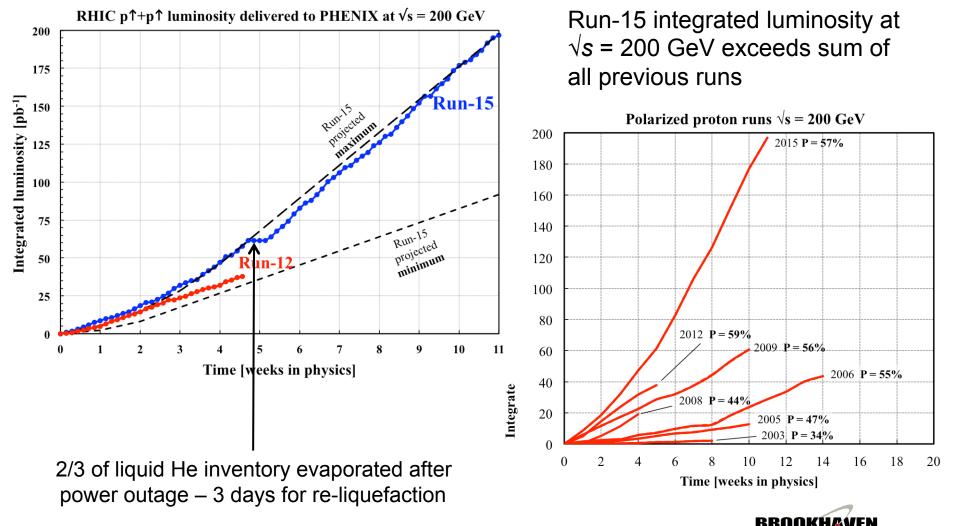
- $p\uparrow + p\uparrow$ at $\sqrt{s} = 200 \text{ GeV } L$ with beam-beam compensation, *P*
- p↑+Au at $\sqrt{s_{NN}}$ = 200 GeV *L*, *P*, PHENIX MPC damage
- p+AI at $\sqrt{s_{NN}}$ = 200 GeV L, P

Preparations for Run-16 and Run-17

- Au+Au at $\sqrt{s_{NN}}$ = 200 GeV 56 MHz SRF, increased N_b (Run-16)
- $p\uparrow + p\uparrow$ at $\sqrt{s} = 510$ GeV leveled *L* for STAR (Run-17)
- Other modes in BUPs:

Au+Au at $\sqrt{s_{NN}} = 62.4$, 19.6 GeV p↑+p↑ at $\sqrt{s} = 62.4$ GeV d+Au at $\sqrt{s_{NN}} = 200$, 62.4, 39, 20 GeV Ru+Ru and Zr+Zr at $\sqrt{s_{NN}} = 200$ GeV

Run-15 p \uparrow +p \uparrow at \sqrt{s} = 200 GeV


Luminosity

3

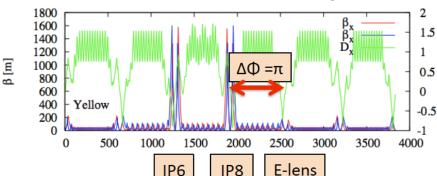
NATIONAL LABORATORY

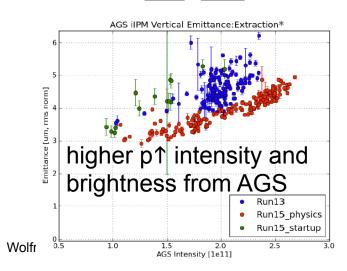
Run Coordinator: Vincent Schoefer

$L = 25 \text{ pb}^{-1}/\text{week}$ (2.7× 2012)

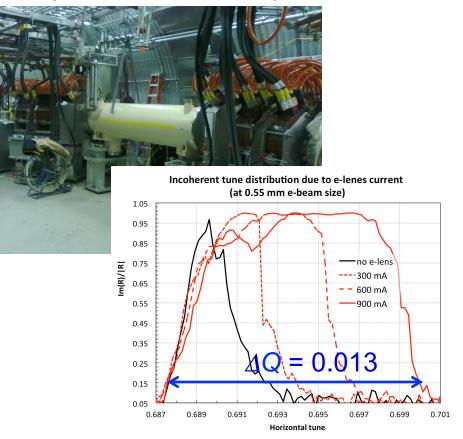
Wolfram Fischer

Run-15 p \uparrow +p \uparrow at \sqrt{s} = 200 GeV

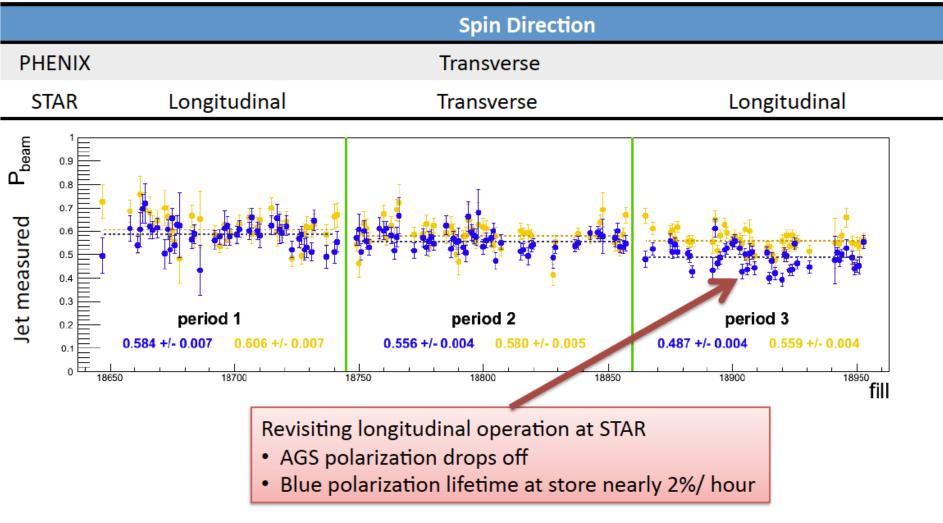

Luminosity increases from:


1. Head-on beam-beam compensation scheme (lattice + e-lenses)

D [m]

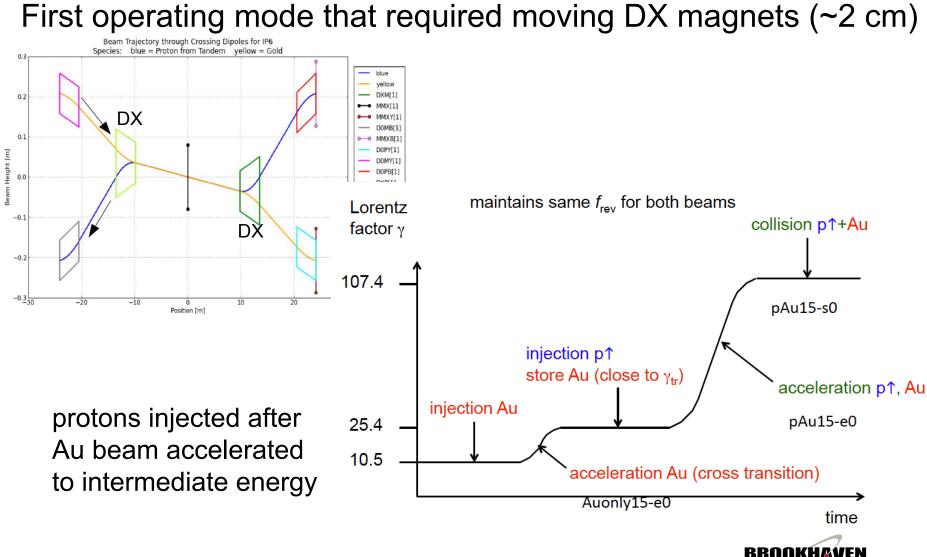

2. Increased bunch intensity from injectors

ATS type lattice (S. White) – minimizes beam-beam resonance driving terms


Electron lenses – reduce BB tune spread by creating tune spread with sign opposite to p-p

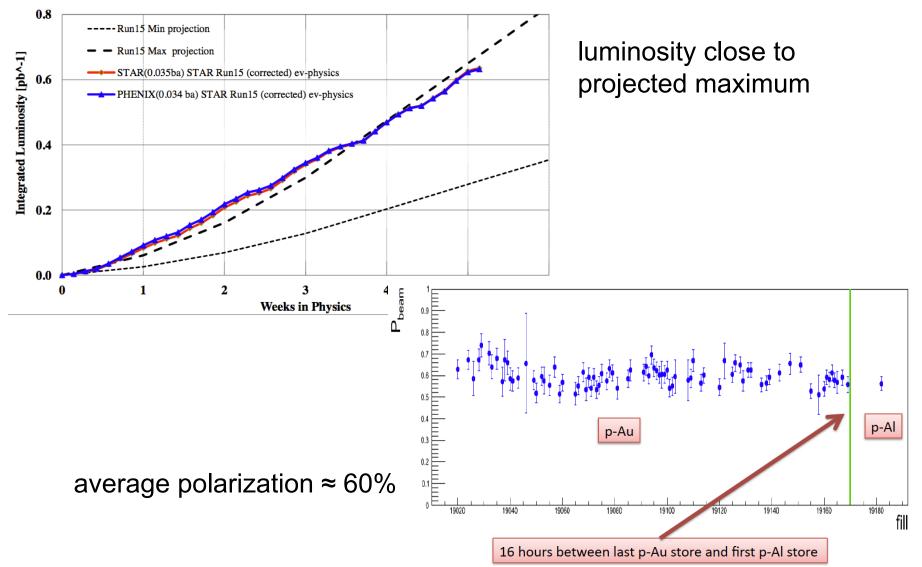
Run-15 p \uparrow +p \uparrow at \sqrt{s} = 200 GeV

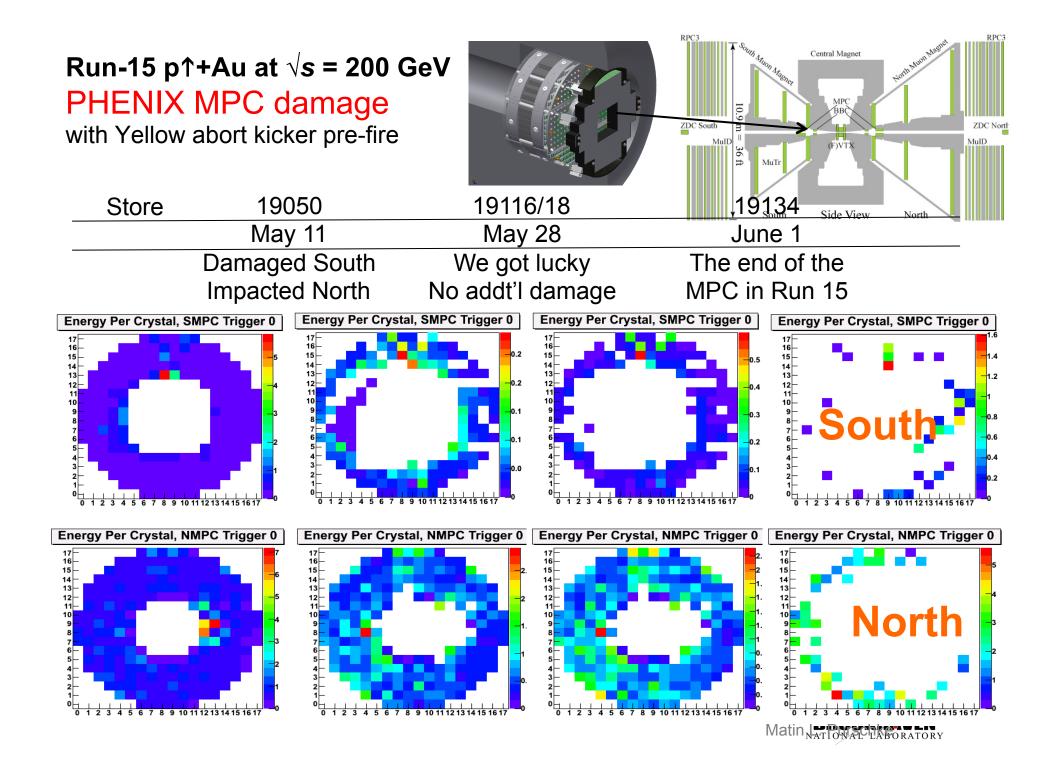
Polarization


Run Coordinator: Vincent Schoefer

Plot courtesy of K.O. Eyser

BROOKHAVEN NATIONAL LABORATORY 5


Run-15 p+Au at \sqrt{s} = 200 GeV luminosity and polarization Run Coordinator: Chuyu Liu



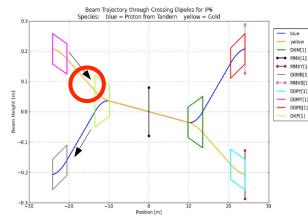
NATIONAL LABORATORY 6

Run-15 p⁺Au at \sqrt{s} = 200 GeV luminosity and polarization

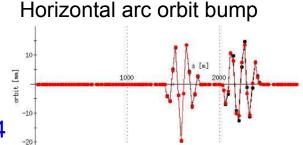
Run Coordinator: Chuyu Liu

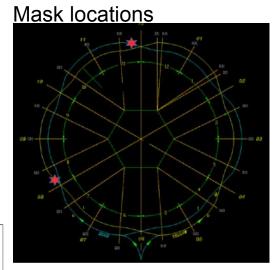
Run-15 p \uparrow +Au at \sqrt{s} = 200 GeV

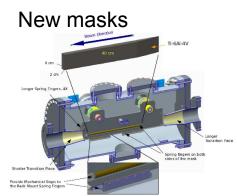
In response to previous damage after pre-fire (Cu+Au 2012), in order to intercept kicked beam before it reaches detector:

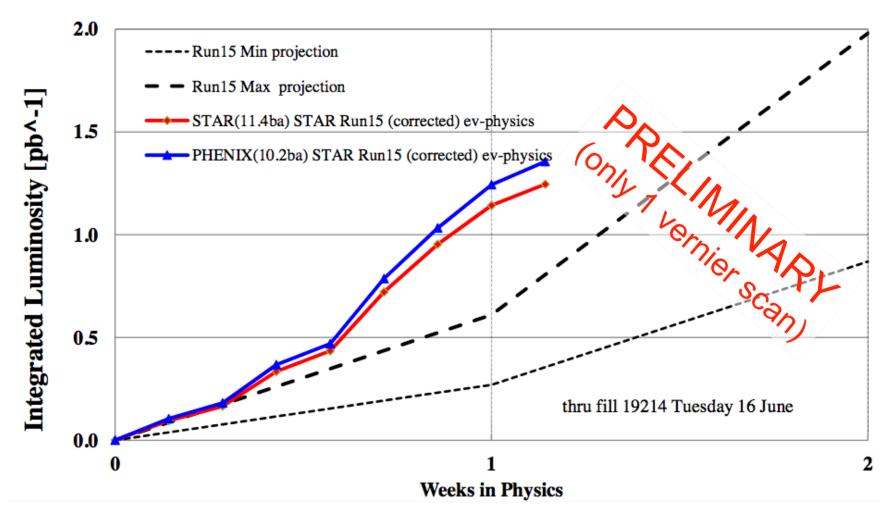

- Installed large (20 mm) orbit bumps in arcs for Run-14
- Installed additional masks for Run-15 (No large-scale damage in Run-13 and Run-14)

Provides insufficient protection in asymmetric operation:


- Smaller distance beam-to-DX-chamber can lead to interception of primary particles after Yellow pre-fire
- Secondary particles reach MPC (and other detector components)


Better protection requires:


- Yellow abort re-location,
- Or masks in cryo-regions


PHENIX MPC damage

Run-15 p**+AI** at \sqrt{s} = 200 GeV luminosity and polarization

So far on track to meet max luminosity projections (APEX and MD coming up) Polarization $\approx 55\%$, lower than in p↑+Au ($\approx 60\%$)

Possible modes for Run-16 and Run-17

Run-16

STAR:

Au+Au at $\sqrt{s_{NN}}$ = 200 GeV 13 wks

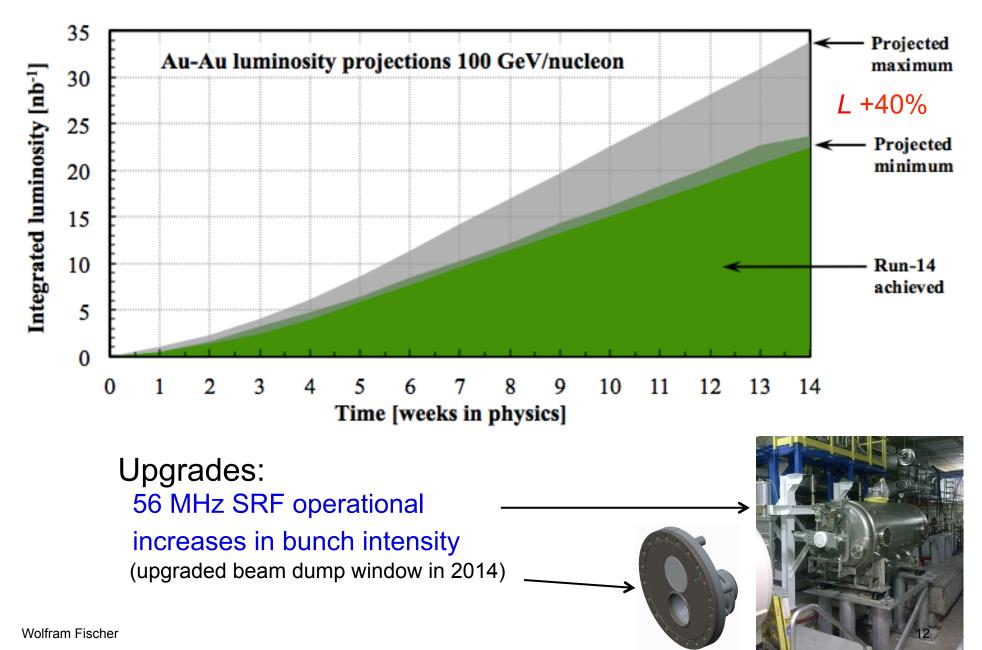
Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV 4 wks d+Au at $\sqrt{s_{NN}}$ = 19.6 GeV 1 wk

Run-17

STAR:

p↑+p↑ at \sqrt{s} = 510 GeV 11 wks p↑+p↑ at \sqrt{s} = 19.6 GeV 1 wks Ru+Ru at $\sqrt{s_{NN}}$ = 200 GeV 3 wks Zr+Zr at $\sqrt{s_{NN}}$ = 200 GeV 3 wks

PHENIX:


Au+Au at $\sqrt{s_{NN}}$ = 200 GeV 10 wks Option A

Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV 5 wks p↑+p↑ at \sqrt{s} = 62.4 GeV 2 wks Option B

d+Au at $\sqrt{s_{NN}}$ = 200 GeV 1.5 wks d+Au at $\sqrt{s_{NN}}$ = 62.4 GeV 1.5 wks d+Au at $\sqrt{s_{NN}}$ = 39 GeV 2.0 wks d+Au at $\sqrt{s_{NN}}$ = 20 GeV 2.0 wks

Run-16 Au+Au at $\sqrt{s_{NN}}$ = 100 GeV

Au+Au at $\sqrt{s_{NN}}$ = 62.4, 19.6 GeV and p↑+p↑ at \sqrt{s} = 62.4, 19.6 GeV

Estimates based on previous run experience

Au+Au $\sqrt{s_{NN}}$ = 62.4 GeV (STAR, Run-16)

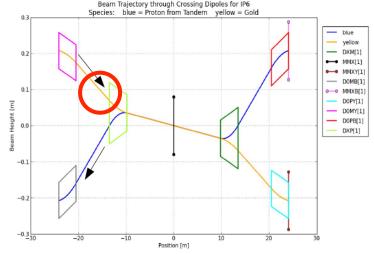
- Run-10: $N_{\rm b} = 1.2 \times 10^9$, $L_{\rm int} = 110 \ \mu b^{-1}$ /week
- Run-16 max projection: $N_{\rm b} \approx 1.6 \times 10^9$, $L_{\rm int} = 500 \,\mu {\rm b}^{-1}$ /week (assumes 3× cooling enhancement, not present in Run-10)

d+Au $\sqrt{s_{NN}}$ = **19.6 GeV** (STAR, Run-16)

• Run-16 max projection: $N_{\rm b} \approx 110/1.5 \times 10^9$, $L_{\rm int} = 0.9$ nb⁻¹/week (no cooling enhancement)

p↑**+p**↑ √*s* **= 62.4 GeV** (PHENIX, Run-16)

- Run-6: $N_{\rm b} = 0.9 \times 10^{11}$, $L_{\rm int} = 0.22 \text{ pb}^{-1}/\text{week}$
- Run-16 max projection: $N_{\rm b} \approx 2.5 \times 10^{11}$, $L_{\rm int} = 2 \text{ pb}^{-1}/\text{week}$

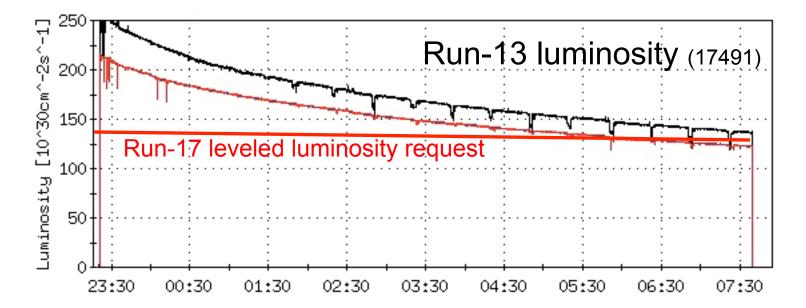

p↑**+p**↑ √*s* **= 19.6 GeV** (STAR, Run-17)

- Run-10: Au+Au operation at same rigidity ($B\rho$) = 32.5 Tm
- Run-17 max projection: $N_{\rm b} \approx 2.5 \times 10^{11}$, $L_{\rm int} = 0.2 \text{ pb}^{-1}/\text{week}$

Run-16 operation with asymmetric species

- Run-15 RHIC machine configuration is dangerous for PHENIX with asymmetric species (damage potential to MPC amplifiers and Si vertex tracker with Yellow abort kicker pre-fire)
- Most dangerous for largest ratio of Z₁/A₁ to Z₂/A₂ (i.e. p+Au)
- Relocation of Yellow abort system in 2015 not easily possible (not fully evaluated, requires several infrastructure modifications, changes to Yellow longitudinal stochastic cooling incl. tree cutting and/or roof-top AC relocations)
- Asymmetric operation also not compatible with undulator for Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment (R&D for eRHIC) Will delay undulator installation if asymmetric operation in Run-16

Run-16 d+Au at $\sqrt{s_{NN}}$ = 200, 62.4, 39, 19.6 GeV (PHENIX)


		sity estimat									
√s _{NN}	beam E	L _{peak}	Lavg/Lpeak	L/week	σ_{s}	L z <30cm	L z <10cm	comment			
[GeV]	[GeV]	10 ²⁸ cm ⁻² s ⁻¹	[%]	[nb ⁻¹]	[cm]	[%]	[%]				
200	100	17.4	58	33	35	50	20	Run-14			
62	31.2	1.67	60	3.3	35	50	20	197 MHz or	n, cooling on	for Au	
39	19.5	0.66	55	1.2	35	50	20	197 MHz on, cooling off for Au			
20	9.8	0.17	50	0.3	150	15	5	197 MHz off, cooling off for Au			
4/16/2015 d	+Au lumino	sity estimat	es for PHE	NIX (request	by Jamie N	Nagle)					
$\sqrt{s_{NN}}$	beam E	L _{peak}	L_{avg}/L_{peak}	L/week	σ_{s}	L z <30cm	L z < 10 cm	comment			
[GeV]	[GeV]	10 ²⁸ cm ⁻² s ⁻¹	[%]	[nb ⁻¹]	[cm]	[%]	[%]				
200	100	56	60	110	35	50	20	Run-14			
62	31.2	5.37	60	10.6	35	50	20	197 MHz or	n, cooling on	for Au	
39	19.5	2.12	55	3.8	35	50	20	197 MHz or	n, cooling off	for Au	
20	9.8	0.55	50	0.9	150	15	5	197 MHz off, cooling off for Au			
	+Au lumino	sity estimat									
√s _{NN}	beam E	L _{peak}	Lavg/Lpeak	L/week	σs		L z <10cm	comment			
√s _{NN} [GeV]		-			σ _s [cm]	[%]	L z <10cm [%]				
√s _{NN}	beam E	L _{peak}	L _{avg} /L _{peak} [%] 50	L/week		[%] 15	[%] 5	γ = 7.8		f, cooling off	
√s _{NN} [GeV]	beam E [GeV]	L _{peak} 10 ²⁶ cm ⁻² s ⁻¹	$\frac{L_{avg}/L_{peak}}{[\%]}$	L/week [nb ⁻¹]	[cm]	[%]	[%] 5 5			f, cooling off f, cooling off	
√s _{NN} [GeV] 14.6	beam E [GeV] 7.3	L _{peak} 10 ²⁶ cm ⁻² s ⁻¹ 65	L _{avg} /L _{peak} [%] 50	L/week [nb ⁻¹] 0.7	[cm] 150	[%] 15	[%] 5	γ = 7.8	197 MHz of	· •	for Au
√s _{NN} [GeV] 14.6 11.6 7.7	beam E [GeV] 7.3 5.75	L _{peak} 10 ²⁶ cm ⁻² s ⁻¹ 65 12.0 2.4	L _{avg} /L _{peak} [%] 50 50 30	L/week [nb ⁻¹] 0.7 0.2 0.02	[cm] 150 150	[%] 15 15	[%] 5 5	$\gamma = 7.8$ $\gamma = 6.2$	197 MHz of	f, cooling off	for Au
√s _{NN} [GeV] 14.6 11.6 7.7	beam E [GeV] 7.3 5.75 3.85	$\begin{array}{c} L_{peak} \\ 10^{26} \text{cm}^{-2} \text{s}^{-1} \\ 65 \\ 12.0 \\ 2.4 \\ \end{array}$	L _{avg} /L _{peak} [%] 50 50 30	L/week [nb ⁻¹] 0.7 0.2 0.02	[cm] 150 150	[%] 15 15 15	[%] 5 5	$\gamma = 7.8$ $\gamma = 6.2$ $\gamma = 4.1$	197 MHz of	f, cooling off	for Au
√s _{NN} [GeV] 14.6 11.6 7.7 5/04/2015 p	beam E [GeV] 7.3 5.75 3.85	L _{peak} 10 ²⁶ cm ⁻² s ⁻¹ 65 12.0 2.4	$\frac{L_{avg}/L_{peak}}{[\%]}$ 50 50 30 es for PHE L_{avg}/L_{peak}	L/week [nb ⁻¹] 0.7 0.2 0.02 NIX	[cm] 150 150 150	[%] 15 15 15	[%] 5 5 5	$\begin{array}{l} \gamma = 7.8 \\ \gamma = 6.2 \\ \gamma = 4.1 \end{array}$	197 MHz of	f, cooling off	for Au
$\frac{\sqrt{s_{NN}}}{[GeV]}$ 14.6 11.6 7.7 5/04/2015 p $\sqrt{s_{NN}}$	beam E [GeV] 7.3 5.75 3.85 +Au lumino beam E	$\begin{array}{c c} L_{peak} \\ \hline 10^{2b} \text{cm}^{-2} \text{s}^{-1} \\ \hline 65 \\ \hline 12.0 \\ 2.4 \\ \hline \text{osity estimat} \\ L_{peak} \end{array}$	$\frac{L_{avg}/L_{peak}}{[\%]}$ 50 50 30 es for PHE $\frac{L_{avg}/L_{peak}}{L_{avg}}$	L/week [nb ⁻¹] 0.7 0.2 0.02 NIX L/week	[cm] 150 150 150	[%] 15 15 15 L z <30cm	[%] 5 5 5 L z <10cm	$\begin{array}{l} \gamma = 7.8 \\ \gamma = 6.2 \\ \gamma = 4.1 \end{array}$	197 MHz of	f, cooling off	for Au
$\sqrt{s_{NN}}$ [GeV] 14.6 11.6 7.7 5/04/2015 p $\sqrt{s_{NN}}$ [GeV]	beam E [GeV] 7.3 5.75 3.85 ++Au lumino beam E [GeV]	$\begin{array}{c} L_{peak} \\ 10^{26} cm^{-2} s^{-1} \\ 65 \\ 12.0 \\ 2.4 \\ \\ \hline \\ posity estimat \\ L_{peak} \\ 10^{28} cm^{-2} s^{-1} \end{array}$	$\begin{array}{c} L_{avg}/L_{peak} \\ [\%] \\ 50 \\ 50 \\ 30 \\ \end{array}$ es for PHE $\begin{array}{c} L_{avg}/L_{peak} \\ [\%] \end{array}$	L/week [nb ⁻¹] 0.7 0.2 0.02 NIX L/week [nb ⁻¹]	[cm] 150 150 150 0 s [cm]	[%] 15 15 15 L z <30cm [%]	[%] 5 5 5 L z <10cm [%]	$\gamma = 7.8$ $\gamma = 6.2$ $\gamma = 4.1$ comment Run-15	197 MHz of	f, cooling off f, cooling off	for Au

Wolfram Fischer

Run-17 p+**p** at \sqrt{s} = 510 GeV (STAR)

STAR requested level luminosity at 1.3×10³² cm⁻²s⁻¹

(0.9 events per bunch-bunch crossing, ≈ 50% of Run-13 max, ≈ 30% of Run-17 expected max)

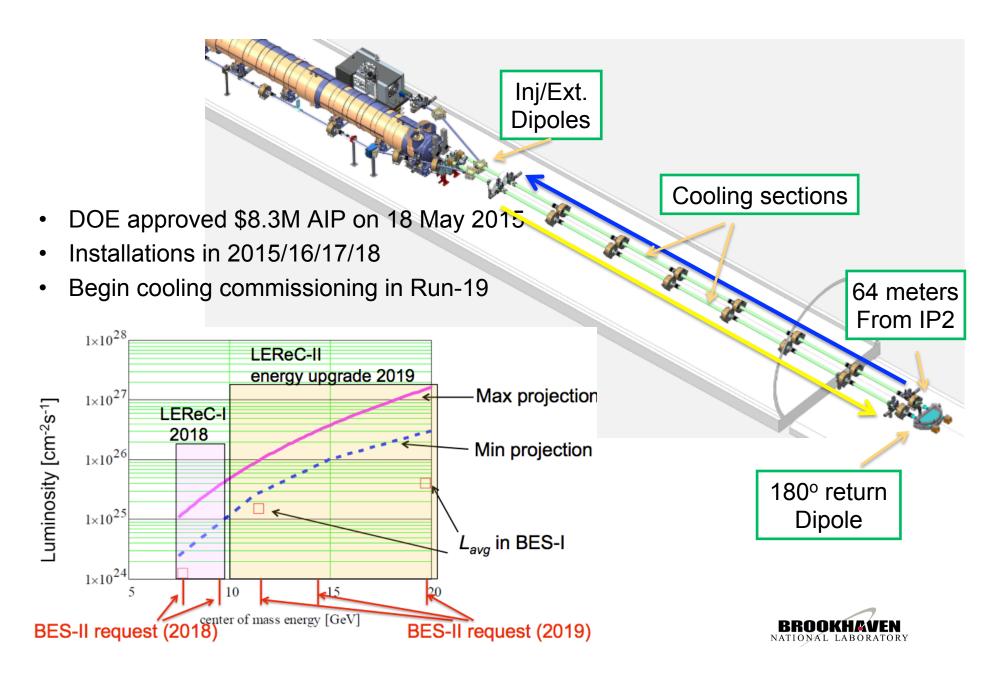
Possible methods for leveling:

Dynamic β^* change during store (tested in Run-14) Changing transverse offset with electron lens (needs study)

New operating mode, plan for $L_{avg} \approx 90\% L_{peak}$

Need Run-17 also for high-luminosity test for sPHENIX era

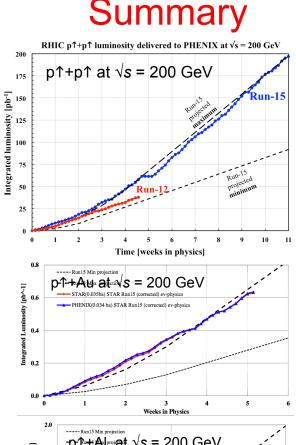
Ru+Ru and Zr+Zr Run-17 at $\sqrt{s_{NN}}$ = 200 GeV (STAR)

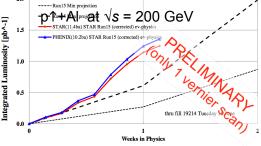

- Full intensity = Ru, Zr charge per bunch \geq Au charge per bunch
- Need enriched source material for laser ion source or hollow cathode source Ru-96 abundance 5.6%, Zr-96 abundance 2.8%
- Enriched Zr-96 available in metallic form
 can run at full intensity
- Enriched Ru-96 not available from any source (still searching ...) Need ≈ 1 g for operation Have 40 mg in hand (97.92% enriched) 400 mg target material at GSI
 => can likely run at 5% of full intensity Need test low intensity operation in Run-16

Low Energy RHIC electron Cooling Phase-I

RHIC Run-15 and Run-16/17 projections

Run-15


- p↑+p↑ at √s = 200 GeV record luminosities (L_{week} = 2.7× Run-12) periods of lowered P
- p↑+Au at √s = 200 GeV met max luminosities goals, P ≈ 60% PHENIX detector damage with Yellow pre-fire
- $p\uparrow+AI$ at $\sqrt{s} = 200 \text{ GeV}$ ongoing, on track to met max luminosities goals


Run-16

- Au+Au at $\sqrt{s_{NN}}$ = 200 GeV *L* +40% relative to Run-14
- Au+Au $\sqrt{s_{NN}}$ = 62.4, 19.6 GeV and p↑+p↑ at \sqrt{s} = 64.2 luminosity estimates based on previous runs
- Asymmetric operation risky to PHENIX without significant changes to machine (difficult to implement for Run-16)

Run-17 (STAR only)

- $p\uparrow+p\uparrow$ at $\sqrt{s} = 510$ GeV with luminosity <u>leveled</u> at 1.3×10³² cm⁻²s⁻¹
- p↑+p↑ at √s = 19.6 GeV
- Zr+Zr, Ru+Ru Ru-96 intensity may be low (≈ 5% of Au charges) Wolfram Fischer

