PHENIX Data Release Plan: 2013-2014 Runs

Stefan Bathe PHENIX Analysis Coordinator Baruch College, CUNY

Stefan Bathe, PAC2015

- 2009--2010: Hadron Blind Detector (HBD)
- 2011--present: Silicon Vertex Detector (VTX)

Stefan Bathe, PAC2015

- 2009--2010: Hadron Blind Detector (HBD)
- 2011--present: Silicon Vertex Detector (VTX)
- 2012--present: Forward Silicon Vertex Detector (FVTX)

- 2009--2010: Hadron Blind Detector (HBD)
- 2011--present: Silicon Vertex Detector (VTX)
- 2012--present: Forward Silicon Vertex Detector (FVTX)

year	E (GeV), species	Lumi*	upgrade	physics	reco status
2010	200, 62, 39, 7 AuAu	1.1	HBD	low-mass dileptons	

year	E (GeV), species	Lumi*	upgrade	physics	reco status
2010	200, 62, 39, 7 AuAu	1.1 🤇	HBD	low-mass dileptons	

year	E (GeV), species	Lumi*	upgrade	physics	reco status
2214	-10	20			
2011	510 pp 19, 200, 27 AuAu	28 0.8	W trigger VTX	anti-q helicity Heavy Flavor	
2010	200, 62, 39, 7 AuAu	1.1	HBD	low-mass dileptons	

year	E (GeV), species	Lumi*	upgrade	physics	reco status
2011	510 pp 19, 200, 27 AuAu	28 0.8	W trigger VTX	anti-q helicity Heavy Flavor	
2010	200, 62, 39, 7 AuAu	1.1	HBD	low-mass dileptons	

year	E (GeV), species	Lumi*	upgrade	physics	reco status
		_			
2012	200, 510 pp 193 UU	4, 50 0.17	W trigger	anti-q helicity, geometry.	
	200 CuAu	5	(F)VTX	Heavy flavor	
2011	510 pp	28	W trigger	anti-q helicity	
	19, 200, 27 AuAu	0.0	VIA	i leavy i lavoi	
2010	200, 62, 39, 7 AuAu	1.1	HBD	low-mass dileptons	

year	E (GeV), species	Lumi*	upgrade	physics	reco status
2012	200.510 pp	4.50	W trigger	anti-g helicity.	
	193 UU 200 CuAu	0.17 5	(F)VTX	geometry, Heavy flavor	
2011	510 pp 19, 200, 27 AuAu	28 0.8	W trigger VTX	anti-q helicity Heavy Flavor	
2010	200, 62, 39, 7 AuAu	1.1	HBD	low-mass dileptons	

year	E (GeV), species	Lumi*	upgrade	physics	reco status
2013	510 pp	242	W trigger	anti-q helicity	
2012	200, 510 pp 193 UU 200 CuAu	4, 50 0.17 5	W trigger (F)VTX	anti-q helicity, geometry, Heavy flavor	
2011	510 pp 19, 200, 27 AuAu	28 0.8	W trigger VTX	anti-q helicity Heavy Flavor	
2010	200, 62, 39, 7 AuAu	1.1	HBD	low-mass dileptons	

year	E (GeV), species	Lumi*	upgrade	physics	reco status
2013	510 pp	242	W trigger	anti-q helicity	
2012	200, 510 pp 193 UU 200 CuAu	4, <u>50</u> 0.17 5	W trigger (F)VTX	anti-q helicity, geometry, Heavy flavor	
2011	510 pp 19, 200, 27 AuAu	28 0.8	W trigger VTX	anti-q helicity Heavy Flavor	
2010	200, 62, 39, 7 AuAu	1.1	HBD	low-mass dileptons	

year	E (GeV), species	Lumi*	upgrade	physics	reco status
2014	15, 200 AuAu 200 ³ HeAu	2.3 25	(F)VTX	Heavy flavor, Flow in small systems	
2013	510 pp	242	W trigger	anti-q helicity	
2012	200, 510 pp 193 UU 200 CuAu	4, 50 0.17 5	W trigger (F)VTX	anti-q helicity, geometry, Heavy flavor	
2011	510 pp 19, 200, 27 AuAu	28 0.8	W trigger VTX	anti-q helicity Heavy Flavor	
2010	200, 62, 39, 7 AuAu	1.1	HBD	low-mass dileptons	

year	E (GeV), species	Lumi*	upgrade	physics	reco status
2014	15,200 AuAu 200 ³ HeAu	2.3 25	(FVTX)	Heavy flavor, Flow in small systems	
2013	510 pp	242	W trigger	anti-q helicity	
2012	200, 510 pp 193 UU 200 CuAu	4, 50 0.17 5	W trigger (F)VTX	anti-q helicity, geometry, Heavy flavor	
2011	510 pp 19, 200, 27 AuAu	28 0.8	W trigger VTX	anti-q helicity Heavy Flavor	
2010	200, 62, 39, 7 AuAu	1.1	HBD	low-mass dileptons	

LOW-MASS DILEPTONS

Low-Mass Dileptons

PHENIX Run04 PRC 81, 034911 (2010)

Low-Mass Dileptons

Discrepancy between PHENIX and STAR

Hadron Blind Detector (HBD)

- Čerenkov detector with CF₄ gas
- Csl photocathode
- Triple GEMs for signal multiplication
- Pad readout
- 2.4 % X₀
- Background from scintillation light from charged particles in CF₄

Rejects conversion and Dalitz pairs

HBD Analysis

M. Makek, WTPD, BNL, 08/2014

- Challenging analysis
- Requires understanding of bckgrnd at 0.1 % level in central collisions
- Improved hadron rejection
- Improved background subtraction

HBD Data Release Plan

Quark Matter 2012, arXiv:1211.6002

- Preliminary result for peripheral and semi-central
- Final analysis completed
- Paper Preparation Group formed December 2014
- Complete paper draft exists
- Plan: journal submission by September 2015

HEAVY FLAVOR ELECTRONS

Heavy flavor electrons

6/12/17

- Large suppression of heavy flavor electrons (despite of predicted dead-cone effect)
- Large flow (despite of large mass)
- Depends on quark mass?
- Separate electrons from c and b quarks!

23

VTX Detector

Separate electrons from c, b via displaced vertex

- Run14 projections
- Au+Au
 - Goal: 1.5 nb⁻¹
 (10 B mbias events)
 - Recorded: 2.3 nb⁻¹
- p+p
 - Goal: 15 pb⁻¹
 - Sampled (Run15): 23 pb⁻¹

Analysis Challenge: Alignment

DCA Resolution from Run-14 alignment exceeds 100 μm specification

Full VTX / FVTX alignment with MILLEPEDE complete

Analysis Challenge: Unfolding Decay matrix for B

- Hadron spectra expected to be significantly modified in AuAu (w.r.t. pp)
- Requires unfolding of electron spectra (back to hadron spectra)
- Unfolding procedure fully developed and working

Analysis Challenge: Conversions

Innermost barrel

Conversion Veto: Reject electron tracks that have close partner

- Largest electron background comes from photon conversions
- VTX: 13 % X₀
- Able to reject its own conversions

VTX Reconstruction Status

- Run11 Au+Au 200 GeV: complete
- Run14 Au+Au 200 GeV: ¼ complete
 - 1 month to 50 % completion (July 2015)
 - 6.5 months to 100 % completion (end of 2015)
 - This assumes Run15 production and Run13 reproduction are completed in parallel
- Run15 p+p 200 GeV: 50 % complete

- 2 weeks to completion (July 2015)

5 billion Au+Au events in 3 weeks

VTX Data Release Plan

- Run11 Au+Au
 - Final analysis essentially done
 - Paper Preparation Group formed May 2015
 - Complete paper draft exists
 - Journal submission by September 2015
- Run14 Au+Au, Run 15 p+p
 - Analysis procedure established
 - analysis of Run14 Au+Au and Run15 p+p will be faster
 - preliminary result (50 % of data) by September 2015
 - followed up by publication

HEAVY FLAVOR MUONS

Heavy Flavor Muons with FVTX

Enables clear distinction between energy loss scenarios

FVTX

Detector meets resolution requirements arXiv:1311.3594 (accepted NIM))

FVTX Data Release Plan

- Reconstruction status
 - Run12 Cu+Au, p+p: done
 - Run14:
 - Starting in July
 - 5 months to 50 % completion (November 2015)
 - 9 month to 100 % completion (March 2016)
 - Run15:
 - starting this week,
 - two weeks to completion (July 2015)

Goal: preliminary result from Cu+Au in September 2015

GLUON & ANTI-QUARK POLARIZATION

Gluon Spin Results

Finalizing Run-13 510 GeV p+p results

Mid-Rapidity W results

W \rightarrow e results from Runs 11, 12, 13 submitted for publication arXiv:1504.07451

Forward W trigger

$W \rightarrow \mu$: preliminary result DIS 2014

- Working on finalizing the result
- Upcoming new Run13 reconstruction with improved FVTX-MuTr alignment to improve hadron rejection

SMALL SYSTEMS

d+Au

Mass ordering for identified hadron is observed in both d+Au and p+Pb ---- consistent with hydrodynamic flow

Run14 ³He+Au

- Preliminary result shown at Initial Stages 2014
- v_2 similar in ³He+Au and d+Au
- Significant v₃ in ³He+Au
- Publication Plan
- Paper Preparation Group formed February 2015
- Journal submission in July 2015

RUN14 15 GEV AU+AU

Beam Energy Scan Results

- All data sets fully reconstructed
- Including Run14 Au+Au at 15 GeV
- Preliminary result exists
- Paper Preparation Group formed December 2014

Summary

- RHIC Computing Facility (RCF):
 - 15,000 batch computing slots, 8 PB storage for raw data and DSTs
- Open Science Grid:
 - large-scale simulations w/o impacting closer-to-the-data RCF resources
- Keeping pace with increase of data size
 - Added VTX, FVTX, W trigger, MPC-EX
 - Still recording data with > 5 kHz
 - Can essentially reconstruct data from each year within that year
- Upgrades are pushing challenging analyses
- Releasing key new results in timely manner

