# Review and Outlook of the Search for Chiral Effects at STAR

# Gang Wang(UCLA)

#### for the STAR Collaboration





## **Outline**

Motivation

#### ✤ STAR Results

- Chiral Magnetic Effect (CME)
- ♦ Chiral Magnetic Wave (CMW) ----→ arXiv:1504.02175, accepted by PRL
- Chiral Vortical Effect (CVE)

#### ✤ Outlook

| Phys. Rev. Lett. 103(2009)251601: | 276 |
|-----------------------------------|-----|
| Phys. Rev. C 81(2010)54908:       | 181 |
| Phys. Rev. C 88(2013)64911:       | 8   |
| Phys. Rev. C 89(2014)44908:       | 15  |
| Phys. Rev. Lett 113(2014)052302:  | 19  |

PRL Editors' Suggestion

#### **Big Bang & Little Bangs**



# Vacuum transition may occur on a large scale or a small scale.we can learn from the Little Bangs



#### **QCD vacuum transition**



D. Diakonov, Prog. Part. Nucl. Phys. 51, 173 (2003)

$$N_L^f - N_R^f = 2Q_W, \ Q_W \neq 0 \rightarrow \mu_A \neq 0$$

QCD vacuum transition nonzero topological charge chirality imbalance (local parity violation)

## **Chiral Magnetic Effect**



Chiral Magnetic Effect (CME): finite chiral charge density induces an electric current along external magnetic field.

 $j_V = \frac{N_c e}{2\pi^2} \mu_A B \Rightarrow$  electric charge separation along *B* field

D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nuclear Physics A 803, 227 (2008)

#### **Local Parity Violation + CME**

$$\frac{dN_{\pm}}{d\phi} \propto 1 + 2a_{\pm} \cdot \sin\left(\phi^{\pm} - \Psi_{RP}\right)$$

A direct measurement of the *P*-odd quantity "*a*" should yield *zero*.





#### **Visual evidence: fluctuation**



#### γ correlator



#### **Charge separation signal**



- $\gamma_{os} > \gamma_{ss}$ , consistent with CME expectation
- Consistent between different years (2004 and 2007)
- Confirmed with 1st-order EP (from spectator neutron  $v_1$ )
- Not explained by known event generators

# K<sup>0</sup><sub>S</sub>-hadron correlation



• Correlations of K<sup>0</sup><sub>S</sub>-h<sup>-</sup> and K<sup>0</sup><sub>S</sub>-h<sup>+</sup> consistent with each other: no charge-dependent separation

## **Λ-hadron correlation**



• Correlations of  $\Lambda$ -h<sup>±</sup> also show no charge-dependent separation (protons and antiprotons have been excluded from h<sup>±</sup>)

- Separation observed for  $h^{\pm}\text{-}h^{\pm}$  is due to electric charge
- s quarks participate in the chiral dynamics in a similar way as u/d

#### **Beam Energy Scan**

Phys. Rev. Lett 113 (2014) 052302



At lower beam energies, charge separation starts to diminish.

#### **Flow-related background**

Phys. Rev. Lett 113 (2014) 052302



A. Bzdak, V. Koch and J. Liao, Lect. Notes Phys. 871, 503 (2013).

### **CME contribution**



$$H^{\kappa} = (\kappa v_2 \delta - \gamma) / (1 + \kappa v_2)$$

A. Bzdak, V. Koch and J. Liao, Lect. Notes Phys. 871, 503 (2013).

•  $\kappa \approx 2 - v_{2,F}/v_{2,\Omega} \approx 1.2$ : F and  $\Omega$  denote full phase space and finite detector acceptance, respectively

• CME signal ( $\Delta H$ ) decreases to 0 from 19.6 to 7.7 GeV

- Probable domination of hadronic interactions over partonic ones
- Need better estimate of  $\kappa$  and more statistics



#### **Deformed nuclei: U+U**

• Similar signals in U+U



- Use  $\gamma_{OS}\text{-}\gamma_{SS}$  to quantify the signal
- N<sub>part</sub> accounts for dilution effects
  - A dedicated trigger for events with 0-1% spectator neutrons
  - With magnetic field suppressed, the charge separation signal (mostly background) disappears, while  $v_2$  is still ~2.5%

Extrapolate to intermediate centrality? **Isobar collisions may work better.** 

#### CMW



#### **Observable**



Then  $\pi^- v_2$  should have a positive slope as a function of  $A_{ch}$ , and  $\pi^+ v_2$  should have a negative slope with the same magnitude. v<sub>2</sub> vs A<sub>ch</sub>



- $v_2(A_{ch})$  slopes for  $\pi^{\pm}$ :
  - opposite sign
  - similar magnitude

$$v_2^{\pm} = v_2^{\text{base}} \mp \left(\frac{q_e}{\overline{\rho}_e}\right) A_{ch}$$

•  $v_2$  difference vs  $A_{ch}$  may have a non-zero intercept: other physics?

# **Slope vs centrality**

Y. Burnier, D. E. Kharzeev, J. Liao and H-U Yee, arXiv:1208.2537v1 [hep-ph].



Similar trends between data and theoretical calculations with CMW. UrQMD can not reproduce the slopes.

## **Beam Energy Scan**



Similar trends are observed for different beam energies down to 19.6 GeV. Below 19.6 GeV, more statistics are needed.

#### U+U



Similar pattern and magnitude seen in U+U collisions.

# Kaon



With the same electric quadruple of QGP upon chemical freezeout, one expects to see a weaker effect for kaons (Y. Burnier, D. Kharzeev, J.g Liao, and H. Yee, PRL 107 052303)

#### **Chiral Vortical Effect**

#### **Chiral Magnetic Effect vs Chiral Vortical Effect**

Chirality Imbalance ( $\mu_A$ ) Magnetic Field ( $\omega \mu_e$ ) Fluid Vorticity ( $\omega \mu_B$ )  $\downarrow$  Electric Charge ( $j_e$ ) Baryon Number ( $j_B$ ) D. Kharzeev, D. T. Son, PRL 106 (2011) 062301

 $\langle \cos(\phi_{\mathbf{A}} + \phi_{\mathbf{D}} - 2\Psi_{RP}) \rangle$ 

correlate  $\Lambda$ -p to search for the Chiral Vortical Effect

#### **Λ-proton correlation**



- same baryon number:  $\Lambda p$  and  $\overline{\Lambda}\overline{p}$
- opposite baryon number:  $\Lambda \overline{p}$  and  $\overline{\Lambda} p$

\* "same B" is systematically lower than "oppo B" in the mid-central and peripheral collisions, consistent with the CVE expectation.

# What we learned so far

- signal of charge separation w.r.t RP
  - comfirmed with different EP types (1st- and 2nd-order)
  - remain in Au+Au, Cu+Cu, Pb+Pb and U+U
  - persist from 19.6 GeV to 2.76 TeV
  - repeated with reduced correlators (not shown here)
  - robust when suppressing HBT+Coulomb (not shown here)
- signal seems to disappear when
  - one of h<sup>±</sup> is replaced with a neutral strange particle
  - the collision energy is down to ~7.7 GeV
  - B field from spectators is supressed ( $v_2$  is still sizable)

#### we also showed

- CMW signal: finite  $\Delta v_2(A_{ch})$  slopes
- CVE signal: baryon-number separation w.r.t. RP

## **Outlook: Isobars**

- Isobars are atoms (nuclides) of different chemical elements that have the same number of nucleons.
- For example, <sup>96</sup><sub>44</sub>Ruthenium and <sup>96</sup><sub>40</sub>Zirconium:
- Up to 10% variation in B field

|      | <sup>96</sup> 44Ru+ <sup>96</sup> 44Ru | VS     | <sup>96</sup> 40Zr+ <sup>96</sup> 40Zr |
|------|----------------------------------------|--------|----------------------------------------|
| Flow |                                        | $\leq$ |                                        |
| CMW  |                                        | >      |                                        |
| CME  |                                        | >      |                                        |
| CVE  |                                        | =      |                                        |

# **Isobars: multiplicity**

- Almost identical distributions of multiplicity (MC Glauber)
- The ratio is close to 1 except for 0-10% most central events
- Zr is a little deformed ( $\beta_2$ =0.2), and Ru is spherical ( $\beta_2$ =0.05)



# **Isobars: B field**

- Clear difference in the B field for the same centrality
- The ratio is close to 1.1 for peripheral events
- Reduces to 1.07 for central events



## **Isobars: charge separation**

- Projection from 1.2B events shows difference in  $\Delta H$
- The ratio is  $5\sigma$  above 1 ( $3\sigma$  with 400M events)
- If it's v<sub>2</sub>-driven, the ratio will follow eccentricity (be 1 or below 1)



# Isobars: $\Delta v_2(A_{ch})$ slope

- The slope parameter is also expected to differ
- With 1.2B events, the ratio is  $1\sigma$  above 1
- Need more statistics





#### Outlook: Cu+Au



Suppressed  $\gamma$  signal of charge separation in Cu+Au collisions?

# Backup slides

#### Isobars: B field

- Which B quantity is sensitive to the charge separation?
- The ratio is similar in term of ~  $B^2$  for 20-60% collisions
- B•cos( $2\Delta\phi$ ) may be more realistic, with a bigger difference
- We use  $B_v$  for simplicity **Courtesy of Xu-Guang Huang and Wei-Tian Deng** 1.30  $B_{v}$ 1.25 Ru+Ru)/(Zr+Zr)  $B^2$ 1.20 **B** Cos[ $2(\psi_B)$ 1.15 1.10 1.05 s = 200 GeV1.00 100 20 40 60 80

centrality(%)

#### Au+Au 200 GeV

- $\Delta H \cdot N_{part}$  is a roughly linear function of B<sup>2</sup> for Au+Au 200 GeV.
- The 20-60% isobar collisions covers [4, 10] in the x axis.



# **Modulated sign correlator (msc)**



• robust after removing HBT+Coulomb effects with kinematic cuts ( $\Delta \eta$  and  $\Delta p_T$ )

• γ weights different azimuthal regions of charge separation differently

• Modify  $\gamma$  such that all azimuthal regions are weighted equally

•  $\gamma$  is reduced to modulated sign correlator (msc)

• The charge separation signal is confirmed with msc

Phys. Rev. C 88 (2013) 64911

## **Charge multiplicity asymmetry correlator**



- A similarly reduced correlator, observes a similar charge separation.
- Previously, when " $v_2^{obs}$ "=0, the signal was consistent with zero! Phys. Rev. C 89 (2014) 44908
- Now, new measurements with higher statistics report non-zero signal!
- Beam energy dependence also looks similar to that of  $\gamma$ .



 $v_2^{\Omega} = 0.0504,$ and  $v_2^{F} = 0.0397$  $\kappa \approx 2 - v_2^{F} / v_2^{\Omega} \approx 1.2$ 

#### **Observed charge asymmetry**



• N<sup>+</sup> (N<sup>-</sup>) is the number of positive (negative) particles within  $|\eta| < 1$ .

- The distribution was divided into 5 bins, with roughly equal counts.
- Tracking efficiency was corrected with help of HIIJNG.

# $\Delta v_3$ slope



Local charge conservation may introduce  $A_{ch}$  dependence of  $\Delta v_2(\pi)$ . Then one should see **slope-for-\Delta v\_3 / slope-for-\Delta v\_2 \sim v\_3/v\_2** (Bzak & Bozek PLB 726 239 (2013)). Our measurement for  $\Delta v_3$  indicates that such mechanism alone cannot explain data.





# Multi-component Coalescence (MCC) + Quark Transport

 $X_{d^T} - X_{u^T}$  vs Charge Asymmetry



42