

Sergey Levonian DESY, Hamburg

CFNS workshop: Open Questions in Photon-Induced Interactions

Online, 27-Apr-2021

H1 and ZEUS publications about VM at HERA

H1 Topic	Journal	ZEUS Topic	Journal
Exclusive $\pi^+\pi^-$ and ρ^0 in PHP Exclusive ρ^0 with Leading n in PHP Elastic and p-diss J/ψ in PHP Diffractive ρ^0 and ϕ in DIS Diffractive PHP of ρ^0 with large t Elastic J/ψ in PHP and DIS Diffractive PHP of J/ψ with large t Diffractive PHP of $\psi(2S)$ Helicity structure of ρ^0 in DIS Elastic ϕ in DIS Elastic ρ^0 in DIS Quasi-elastic ($z > 0.95$) $\psi(2S)$ in PHP P-diss. ρ^0 and Elastic ϕ in DIS Elastic and Inelastic J/ψ in PHP Elastic ρ^0 and J/ψ at large Q^2 Elastic Rho0 in PHP	Eur.Phys.J.C80 (2020), 1189 Eur.Phys.J.C76 (2016) 1, 41 Eur.Phys.J.C73 (2013) 2466 JHEP05 (2010) 032 Phys.Lett.B 638 (2006) 422 Eur.Phys.J.C46 (2006) 585 Phys Lett B568 (2003) 205 Phys.Lett.B541 (2002) 251 Phys.Lett.B539 (2002) 25 Phys.Lett.B483 (2000) 360 Phys.Lett.B483 (2000) 23 Eur.Phys.J.C13 (2000) 371 Phys.Lett.B421 (1998) 385 Z.Phys.C75 (1997) 607 Nucl.Phys.B472 (1996) 3 Nucl.Phys.B468 (1996) 3	$\begin{array}{l} R(\sigma_{\psi(2S)}/\sigma_{J/\psi(1S)} \text{ in DIS} \\ \text{Exclusive Electroproduction of } 2\pi \\ \Upsilon(1S) \text{ in PHP } (t\text{-dependence}) \\ \text{P-dissociative } J/\psi \text{ in PHP at large } t \\ \text{Exclusive PHP of } \Upsilon \text{ Mesons} \\ \text{Exclusive } \rho^0 \text{ in DIS} \\ \text{Exclusive } \phi^0 \text{ in DIS} \\ \text{Exclusive } J/\psi \text{ in DIS} \\ \text{P-dissociative VM in PHP at large } t \\ \text{Exclusive PHP of } J/\psi \text{ mesons} \\ \text{Exclusive PHP of } J/\psi \text{ mesons} \\ \text{Exclusive } \mu \text{P of } J/\psi \text{ mesons} \\ \text{Exclusive PHP of VM at large } t \\ \text{Spin-Density ME of Exclusive } \rho^0 \text{ in DIS} \\ \text{Elastic } \Upsilon \text{ Photoproduction} \\ \text{Elastic and } p\text{-Dissociative } \rho^0 \text{ in PHP} \\ \text{Elastic } J/\psi \text{ in PHP} \\ \text{Elastic } \omega \text{ in PHP} \\ \gamma^*p \to \phi p \text{ in DIS} \\ \text{Elastic } \rho^0 \text{ in PHP} \\ \text{Elastic } \rho^0 \text{ in DIS} \\ \end{array}$	Nucl. Phys. B 909 (2016) 934 Eur.Phys.J. C 72 (2012) 1869 Phys.Lett. B 708 (2012) 14 JHEP 05 (2010) 085 Phys. Lett. B 680 (2009) 4 PMC Physics A 1, 6 Nucl. Phys. B 718 (2005) 3 Nucl. Phys. B 695 (2004) 3 Eur. Phys. J. C 26 (2003) 389 Eur. Phys. J. C 26 (2003) 389 Eur. Phys. J. C 24 (2002) 345 Phys. Lett. B 487 (2000) 273 Eur. Phys. J. C 14 (2000) 213 Eur. Phys. J. C 12 (2000) 393 Eur. Phys. J. C 12 (2000) 393 Eur. Phys. J. C 6 (1999) 603 Phys. Lett. B 437 (1998) 432 Eur. Phys. J. C 2 (1998) 247 Z. Phys. C 75 (1997) 215 Z. Phys. C 73 (1996) 73 Phys. Lett. B 380 (1996) 220 Phys. Lett. B 377 (1996) 259 Z. Phys. C 69 (1995) 39 Phys. Lett. B 356 (1995) 601

Measured are: $\rho, \rho', \omega, \phi, J/\psi, \psi(2S), \Upsilon$ in EL and PD channels and for $0 < Q^2 < 100 \text{GeV}^2$ More that 5000 references; a couple of new "preliminary" results and ongoing analyses. \Rightarrow Too much to cover in one talk.

- Overall picture and General properties
- An example of one interesting analysis
- Some lessons and suggestions for future experiments

Hard scale can be provided by Q^2 and M_V^2 (at γ^* vertex) or/and by |t| (at p vertex)

Modelling VM Production at HERA

Modelling VM Production at HERA

Interplay between soft and hard processes in DIS

Flavour dependence. Universality

Ratios (scaled according to quark charge content) show large difference as a function of Q^2 , but they become close to 1 (up to WF effects) once plotted vs scaling variable $Q^2 + M_V^2$

 \Rightarrow Cross sections are essentially determined by the dipole size

W dependence. Transition from soft to hard regime

Most recent measurement of elastic ho^0 in PHP Typical soft behaviour with $lpha_{I\!\!P}(0) = 1.065 \pm 0.008$

W dependence. Transition from soft to hard regime

Most recent measurement of elastic ho^0 in PHP Typical soft behaviour with $lpha_{I\!\!P}(0) = 1.065 \pm 0.008$

Transition from soft to hard regime occurs at 'universal' scale $\mu^2=(Q^2\!+\!M_V^2)/4\!\simeq\!3\!\div\!5~{
m GeV^2}$

6 Elastic Photoproduction of J/ψ mesons - Sensitivity to the g/p

- Extrapolating HERA fit describes LHCb
- Low x gluon, based on old HERA data (A. Martin et al, 2008). NLO too steep

6 Elastic Photoproduction of J/ψ mesons - Sensitivity to the g/p

7 Photoproduction of J/ψ mesons with large t - BFKL $I\!\!P$ at work

t-dependence. Shrinkage of diffractive peak

 $\begin{aligned} d\sigma/dt \sim e^{-b|t|} &\to \text{diffractive peak (approximated from Bessel function)} \\ b &= (R/2)^2 &\to \text{transverse size of the target (geometric picture)} \\ \underline{\text{Predictions:}} \quad b &= b_0 + 4\alpha'_{I\!\!P} \ln(W/W_0); \\ \text{soft } I\!\!P: \text{ shrinkage of diffractive peak } (\alpha'_{I\!\!P} = 0.25); \text{ large } b_0 \approx 10 \text{ GeV}^{-2} \\ \text{hard } I\!\!P: \text{ no (or small) shrinkage } (\alpha'_{I\!\!P} < 0.1); & \text{small } b_0 \approx 5 \text{ GeV}^{-2} \end{aligned}$

t-dependence. Shrinkage of diffractive peak

Gluons confinement area (0.6 fm) is smaller than the proton size (0.8 fm)

Or

?

Exclusive VM production at HERA provides a rich field for the QCD understanding of diffraction over a large kinematic domain.

Many aspects are not covered in this talk, like helicity studies, spin density ME, WF effects, comparison of elastic to proton dissociative channels etc.

Full list of published analyses in the field can be found in page 1.

Several new analyses are ongoing, but we lack a manpower. You are welcome to join!

Now for illustration I try to describe just one specific analysis, showing typical experimental challenges in such seemingly simple reactions.

HERA as a '4P' facility

HERA as a '4P' facility

Here for the first time we investigate the reaction involving all these objects simultaneously:

 $\gamma + \mathbf{p} \longrightarrow \rho^0 \pi^+ \mathbf{n}$

No hard scale present \Rightarrow Regge framework is most appropriate

ρ^0 with Leading Neutron: Control plots

0

-100

0

100

 ϕ_n [deg]

80 100

W_{vo} [GeV]

0 5

20 40 60

Cross sections definitions

$$\mathsf{VMD:} \ \ f_{\gamma/e}(y,Q^2) = \frac{\alpha}{2\pi Q^2 y} \left\{ \left[1 + (1-y)^2 - 2(1-y) \left(\frac{Q_{\min}^2}{Q^2} - \frac{Q^2}{M_\rho^2} \right) \right] \frac{1}{\left(1 + \frac{Q^2}{M_\rho^2} \right)^2} \right\}$$

OPE:
$$f_{\pi/p}(x_L,t) = rac{1}{2\pi} rac{g_{p\pi N}^2}{4\pi} (1-x_L) rac{-t}{(m_\pi^2-t)^2} \exp[-R_{\pi n}^2 rac{m_\pi^2-t}{1-x_L}]$$

Constraining pion flux

Failure to describe $b_n(x_L)$ suggests strong absorptive effects (*n* rescattering) \Rightarrow try to quantify

Estimate of absorption corrections

Optical Theorem: $\frac{d\sigma_{el}}{dt} \mid_{t=0} = b_{el}\sigma_{el} \propto \sigma_{tot}^2$ $r_{el} = (\frac{b_{\gamma p}}{b_{\gamma \pi}}) \cdot (\sigma_{tot}^{\gamma \pi} / \sigma_{tot}^{\gamma p})^2$ Eikonal approach: $b = \langle R^2 \rangle;$ $b_{12} = b_1 + b_2$ World data: $(b_{pp} \simeq 11.7, b_{\pi^+ p} \simeq 9.6, b_{\gamma p} \simeq 9.75) \text{ GeV}^{-2}$

Geometric interpretation: $\langle r^2 \rangle = 2b_1 \cdot (\hbar c)^2 \simeq 2 \text{ fm}^2 \Rightarrow (1.6R_p)^2 \Rightarrow \text{ultra-peripheral process}$ DPP explanation: low mass $\pi^+ n$ state \rightarrow large slope, high masses \rightarrow less steep slope

■ HERA limitations: missing nuclear targets; target polarisation \Rightarrow Big program for EIC (gluon saturation, colour transp., spin physics, ...)

Where is an Odderon? Direct searches [1] were negative. Try via IP-O interference [2,3].

Can one observe Glueball in a double Pomeron reaction in PHP? $p - \text{gap} - M_X - \text{gap} - V \quad (M_X = \sqrt{x_{I\!P1} x_{I\!P2}} W_{\gamma p} = 2 \div 4 \text{ GeV})$

- Well equipped forward region, up to very large η is essential. Also, extend forward tracking as much as possible.
- Zero degree neutron/ γ (?) detector (especially in view of nuclear targets).
- LRG selection and *p*-tagging in Roman Pots are complementary. Try to exploit both methods.
- Good e/γ separation in the backward region (High- $t \gamma$, DVCS)
- Efficient (track based) trigger for soft events! (Low/medium W e-tagger helps in case of light VM's)
- Unfolding technique is vital (e.g. for fwd-tag/untag to EL/PD classes)

Extra slides

Relevant scales?

Studies of WF effects in $c\bar{c}$ system

 $\sigma_{\psi(2S)} / \sigma_{J/\psi(1S)} \text{ in DIS}$ $\mathbb{R} \text{atio } R = \frac{\sigma_{\gamma p \to \psi(2S)p}}{\sigma_{\gamma p \to J/\psi p}} \text{ gives information about the dynamics of hard process}$ $\mathbb{V} \text{ sensitive to radial wave function of charmonium}$ $\mathbb{V} \text{ (2S) wave function different from J/\psi wave function:}$ $\mathbb{V} \text{ Has a node at } \approx 0.35 \text{ fm}$ $\mathbb{V} \text{ (2S) } \approx 2 < r_{J/\psi(1S)}^2 > \mathbb{V} \text{ (2S) } \mathbb{V} \text{ (2S$

pQCD predictions: $R(Q^2=0)\simeq 0.17$ and rises with Q^2

- Ratio rises with Q^2 and is constant in W and |t|
- HERA data in qualitative agreement with pQCD models
- Some discriminating power (albeit statistically limited)

- x_{IP} and t measurements
- Less statistics
- p-tagging systematics

Measure a Large Rapidity Gap

- Data integrated over |t| < 1 GeV²
- High statistics
- Contamination from proton dissociation events
 - Needs to be controlled
- **** Different systematics
- 🕨 Different kinematic coverage

Improved H1 FNC (distinguish ($\langle P angle = 98\%$) and measure n and γ/π^0)

located at z = 106m from IP

 $\langle A
angle \simeq 30\%$ for heta < 0.8 mrad

Preshower: $60X_0$, Main Calo: 8.9λ

Powerful fast track trigger

(allows untagged soft γp to be collected)

Large absorption effects!

Optical Theorem: Eikonal approach: World data:

$$\begin{array}{l} \frac{d\sigma_{el}}{dt} \mid_{t=0} = b_{\rm el} \sigma_{\rm el} \propto \sigma_{\rm tot}^2 \quad \Longrightarrow \quad r_{\rm el} = (\frac{b_{\gamma p}}{b_{\gamma \pi}}) \cdot (\sigma_{\rm tot}^{\gamma \pi} / \sigma_{\rm tot}^{\gamma p})^2 \\ b = \langle R^2 \rangle; \quad b_{12} = b_1 + b_2 \\ (b_{pp} \simeq 11.7, \ b_{\pi^+ p} \simeq 9.6, \ b_{\gamma p} \simeq 9.75) \text{ GeV}^{-2} \end{array}$$

Unofficial private summary!