Saturation model in UPCs

Heikki Mäntysaari

University of Jyväskylä, Finland

Open Questions in Photon-Induced Interactions April 27, 2021

Advantages

• No net color charge transfer: at least two gluon exchange

$$\frac{\mathrm{d}\sigma^{\gamma^* A \to V A}}{\mathrm{d}t} \bigg|_{t=0} = \frac{16\pi^3 \alpha_s^2 \Gamma_{ee}}{3\alpha_{\mathrm{em}} M_V^5} \left[\mathsf{xg}(\mathsf{x}, \mathbf{Q}^2) \right]^2$$

In practice connection to PDFs complicated (see Vadim's talk) Ryskin, 1993

- Measure ${\rm J}/\psi~ {\it p_T} =$ total momentum transfer Δ
 - = Fourier conjugate to ${\boldsymbol{b}}$
 - \Rightarrow Access to spatial structure

UltraPeripheral heavy ion Collisions (UPC)

• At $|b_T| > R_1 + R_2$ one nucleus acts as a photon source

High energy (nuclear) DIS before the Electron Ion Collider!

Vector meson production at high energy/small x

High energy factorization:

- $\gamma \rightarrow q\bar{q}$ splitting, wave function $\Psi^{\gamma}(r, Q^2, z)$
- **2** $q\bar{q}$ dipole scatters elastically: N(r, x, b)
- $q\bar{q} \rightarrow J/\Psi$, wave function $\Psi^{V}(r,z)$

Diffractive scattering amplitude

$$\mathcal{A}^{\gamma^* \boldsymbol{p} \to \boldsymbol{V} \boldsymbol{p}} \sim \int \mathrm{d}^2 b \mathrm{d} z \mathrm{d}^2 r \Psi^{\gamma} \Psi^{\boldsymbol{V}}(\boldsymbol{r}, \boldsymbol{Q}^2, \boldsymbol{z}) \mathbf{e}^{-\mathbf{i} \mathbf{b} \cdot \boldsymbol{\Delta}} N(\boldsymbol{r}, \boldsymbol{x}, \boldsymbol{b})$$

 N(r, x, b): universal dipole-proton scattering amplitude, resumming multiple scattering Convenient degrees of freedom at small x

Phenomenology at the moment: LO (resumming $\alpha_s \ln 1/x$), NLO is coming... H.M, J. Penttala, arXiv:2104.02349 [hep-ph] Coherent cross section: target remains on the same quantum state

Average interaction of states that diagonalize the scattering matrix

- These states are $q\bar{q}$ dipoles with fixed size **r**, probing fixed target configuration Ω
- Good, Walker, PRD 120, 1960

Coherent cross section

$$rac{\mathrm{d}\sigma^{\gamma^* A
ightarrow VA}}{\mathrm{d}t} \sim |\langle \mathcal{A}^{\gamma^* A
ightarrow VA}
angle_{\Omega}|^2$$

 $\bullet\,$ Cross section probes average b dependence of the scattering amplitude = target geometry

$$\langle \mathcal{A}^{\gamma^* p \to V p} \rangle_{\Omega} \sim \int \mathrm{d}^2 \mathbf{b} \mathrm{d} z \mathrm{d}^2 \mathbf{r} \Psi^{\gamma *} \Psi^V(|\mathbf{r}|, z, Q^2) \mathbf{e}^{-\mathbf{i} \mathbf{b} \cdot \boldsymbol{\Delta}} \langle \mathcal{N}(|\mathbf{r}|, x, \mathbf{b}) \rangle_{\Omega}$$

Incoherent cross section

- Target final state $|f\rangle \neq$ initial state $|i\rangle$
- No net color charge transfer: rapidity gap between J/Ψ and target remnants

$$egin{split} \sigma_{ ext{incoherent}} &\sim \sum_{oldsymbol{f}
eq i} |\langle oldsymbol{f} | \mathcal{A} | i
angle|^2 \ &= \sum_{oldsymbol{f}} \langle i | \mathcal{A} | oldsymbol{f}
angle^{\dagger} \langle oldsymbol{f} | \mathcal{A} | i
angle - \langle i | \mathcal{A} | i
angle^{\dagger} \langle i | \mathcal{A} | i
angle \end{split}$$

Average over initial states:

$$\sigma_{
m incoherent} \sim \langle |\mathcal{A}|^2
angle_\Omega - |\langle \mathcal{A}
angle_\Omega|^2$$

Incoherent cross section = covariance of $\mathcal{A}^{\gamma^* \mathcal{A} \rightarrow \mathcal{V} \mathcal{A}}$

 \bullet Amount of event-by-event fluctuations in target configurations Ω

Miettinen, Pumplin, PRD 18, 1978,

Caldwell, Kowalski, PRC81 (2010) 025203

HERA data at small x: $\gamma + p \rightarrow J/\psi + p$ at W = 75 GeV ($x_{\mathbb{P}} \approx 10^{-3}$)

Fluctuations

Round

(incoherent with fluctuating substructure) H.M, B. Schenke, 1607.01711

Ultraperipheral collisions in pA

What happens to the incoherent cross section at high W?

Ultraperipheral p + A: Photon flux $\sim Z^2$ $\gamma + p$ dominates Pb i / (150 MeV/i Larger COM energies: incoherent \rightarrow 0 (?) \Rightarrow smoother proton? ALICE:1809.03235 $x \sim 10^{-2} \rightarrow 10^{-5}$

Approach 1: parametrize the number of hot spots

Small-x gluon emissions increase the number of hot spots Cepila, Contreras, Tapia Takaki, 1608.07559

$$N_{hs}(x) \sim x^{p_1}(1+p_2\sqrt{x})$$

Approach 2: Solve small-x evolution equations

Evolve proton structure by solving evolution perturbatively

• BK eq. with impact parameter

Berger, Stasto, 1106.5740, Cepila, Contreras, Matas, 1812.02548

• JIMWLK eq. Schlichting, Schenke, 1407.8458, H.M., Schenke, 1806.06783 Fit HERA F_2 and exclusive data. H.M., Schenke, 1806.06783 Difficulty: regulating confinement effects

Towards small $x: \gamma + p \rightarrow J/\psi + p^*$

Increasing # of hot spots with energy: Smoother proton, less fluctuations

Cepila, Contreras, Tapia Takaki, 1608.07559

JIMWLK evolution event-by-event Includes also growing RMS size

H.M., Schenke, 1806.06783

Heikki Mäntysaari (JYU)

UPC

Small x in $\gamma + p \rightarrow J/\psi + p^*$

H.M, Schenke, 1806.06783

ALICE data qualitatively compatible with e-b-e fluctuating geometry evolution

• Final data at cross section level?

LIPC

• Are we approaching the black disc limit?

27.4.2021 10 / 19

Saturation in $\gamma + p \rightarrow J/\psi + p$?

LHCb measurement in ultra peripheral p + pGenerically saturation effects \Rightarrow deviations from the $\sigma \sim W^{\delta}$ behaviour

- Small hints at highest W?
- Saturation effects expected to have only a small effect in δ at this W γ+p → J/Ψ+p,Q² = 0 GeV²

H.M, P. Zurita, 1804.05311

UPC

Ultraperipheral collisions in AA

Coherent diffraction today

Measurements not statistic limited anymore

• Different calculations with saturation effects relatively successful

• Flat(?) rapidity dependence in -2 < y < 0???

Also: normalization uncertainty from J/ψ wf, does not completely cancel in nuclear suppression ratio (=ratio to imp. approx.)

ALICE 2101 04577

ALICE, 2101.04623

- First *t* spectra measured!
- (Would be interesting to see coh and incoh)
- Much steeper t spectra than FT of WS
- Steeper slope expected from saturation
- Especially the smallest t bin?

With T. Lappi, F. Salazar and B. Schenke

Accessing fluctuations at different scales

- $\sqrt{|t|}$ is conjugate to b_T
- Small |t|: fluctuations of nucleon positions
- Large |t|: fluctuations at subnucleon scale
- Incoherent slope changes at

 $|t| pprox 0.25 {
m GeV}^2 \sim 0.4 \, {
m fm}$

which is the hot spots size from HERA

H. M., B. Schenke, arXiv:1703.09256

Accessing fluctuations at different scales

Under the ALICE data, but want cross section level spectra!

Comparison to LHC data, no subnucleonic fluctuations

- Only fluctuations of nucleon positions from Woods-Saxon: Coherent cross section overestimated and incoherent underestimated
- \bullet Overall normalization uncertainty from the J/Ψ wave function I.M, B. Schenke, arXiv:1703.09256

Comparison to LHC data, with subnucleon fluctuations

- Calculations with nucleon substructure consistent with the LHC data.
- ullet Dependence on the J/ψ wave function mostly cancels in the ratio
- Note: no W dependent geometry included
- Missing: y and √s dependence of the incoherent cross section How does the incoherent cross section and e-b-e fluctuations depend on x_P?

H.M, B. Schenke, arXiv:1703.09256

Conclusions

- Vector meson production from HERA relatively well understood
- Lots of precise data from LHC (and RHIC!)
- Interesting observations include
 - Large nuclear suppression compared to impulse approximation
 - Disappearing incoherent cross section in high energy $\gamma + p$??
 - Total $\gamma + p \rightarrow J/\psi + p$ cross section: deviating from W^{δ} law from HERA???
 - Low-t part of the $\gamma + Pb \rightarrow J/\psi + Pb$ spectra????
- Wish list:
 - t spectra in $\gamma + p$ and $\gamma + A$ (coherent+incoherent ok)
 - y and \sqrt{s} dependence of the incoherent cross section
- Clear signatures of non-linear effects, but also need for precision theory
 - NLO (coming, see H.M, J. Penttala, 2104.02349)
 - Vector meson wave function beyond phenomenological models (see T. Lappi, H.M, J. Penttala, 2006.02830; Y. Li, P. Maris, J. Vary, 1704.06968)

Backups

Significant nuclear effects seen in $\gamma + A \rightarrow J/\psi + A$

Enhance non-linearities: $Q_{s,A}^2 \sim A^{1/3} x^{-\lambda}$ (larger A is cheaper than smaller x)

The first UPC measurements: clear nuclear suppression Impulse approximation = scaled $\gamma + p$

 $x_{\mathbb{P}} = M_V e^{\pm y} / \sqrt{s}$ CMS, 1605.06966

Light ions

Distribution of small-*x* gluons in *d*: Does it follow nucleon positions? Details of the deuteron wf at small *x*

Nucleon substructure fluctuations in d Preferred by STAR data (coh+incoh)

H.M, Schenke, 1910.03297; STAR 2009.04860

Diffractive scattering

Diffractive events: no exchange of color charge (\rightarrow rapidity gap)

- Target remains intact: *coherent diffraction*, small |t|. Probes average distribution of gluons.
- Target breaks up: *incoherent diffraction*, larger |t|. Sensitive to fluctuations.

Target: proton or nucleus

Subnucleon fluctuations in deuteron

An impact parameter dependent dipole amplitude

$$N(r, x, b) = 1 - \exp\left[-\frac{\pi^2}{2N_c}\alpha_s xg(x, \mu^2)T_p(b)r^2\right]$$

- Fit to HERA data (F_2): initial condition for the DGLAP evolution of $xg(x, \mu^2)$ (Kowalski, Teaney 2003; Rezaeian et al, 2013, H.M, Zurita, 1804.05311)
- Proton profile T_p : Gaussian, width B_p

$$T_{\rho}(b) = -\frac{1}{2\pi B_{\rho}}e^{-b^2/2B_{\rho}}$$

Adding color charge fluctuations: IP-Glasma

- Obtain saturation scale $Q_s(b_T)$ from IPsat (with constituent quarks)
- Sample color charges $ho(b_{T}) \sim Q_s(b_{T})$
- Solve Yang-Mills equations to obtain Wilson lines

$$V(x_T) = P \exp\left(-ig \int \mathrm{d}x^{-} rac{
ho(x^-, x_T)}{
abla^2 + m^2}
ight)$$

- Dipole amplitude: $N(x_T, y_T) = 1 \operatorname{Tr} V(x_T) V^{\dagger}(y_T) / N_c$
- Fix parameters B_{qc} , B_q and m with HERA data

Example configurations: $1 - \operatorname{Re}(\operatorname{Tr} V(x_T))/N_c$

H.M., B. Schenke, arXiv:1603.04349

IP-Glasma and HERA data

H.M., B. Schenke, in preparation and arXiv:1603.04349

• Color charge fluctuations alone are not enough

IP-Glasma and HERA data

H.M., B. Schenke, arXiv:1603.04349

• Large geometric fluctuations are needed

IP-Glasma and HERA data

H.M., B. Schenke, arXiv:1603.04349

• Q_s fluctuations improve description at small |t|

Similar results for ³He

- Subnucleon fluctuations alter the incoherent $\left|t\right|$ slope, and significantly increase the incoherent cross section
- EIC will open a new window to the gluonic structure of light ions, also!