Azimuthal correlations in UPCs

Jian Zhou (周剑)

Based on papers:

1903.10084 and 1911.00237; Cong Li, ZJ and Ya-jin Zhou

2003.06352; Bo-wen Xiao, Feng Yuan and ZJ

2006.06206; Hong-xi Xing, Cheng Zhang, ZJ and Ya-jin Zhou

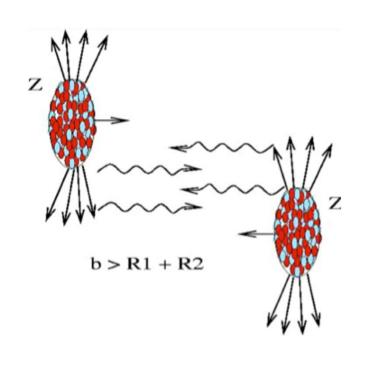
2011.13151; Yoshikazu Hagiwara, Cheng Zhang, ZJ and Ya-jin Zhou

Open questions in photon-induced interactions-from Relativistic Nuclear collisions to the Future EIC, 26-28 April, 2021.

Outline

- > Linearly polarized photon distribution
- ➤ Cos4¢ in di-lepton production
- ➤ Cos2¢ in rho production
- ➤ Cosφ and Cos3φ in di-pion production
- ➤ Summary and Outlook

Coherent photon distributions



Equivalent photon approximation(EPA)

1924, Fermi;

Weizäscker and Williams, 1930's;

$$n(\omega) = \frac{4\mathbf{Z}^{2}\alpha_{e}}{\omega} \int \frac{d^{2}k_{\perp}}{(2\pi)^{2}} k_{\perp}^{2} \left[\frac{F(k_{\perp}^{2} + \omega^{2}/\gamma^{2})}{(k_{\perp}^{2} + \omega^{2}/\gamma^{2})} \right]^{2}$$

$$\sigma_{A_1 A_2 \to A_1 A_2 X}^{WW} = \int d\omega_1 d\omega_2 n_{A_1}(\omega_1) n_{A_2}(\omega_2) \sigma_{\gamma \gamma \to X}(\omega_1, \omega_2)$$

4 million times

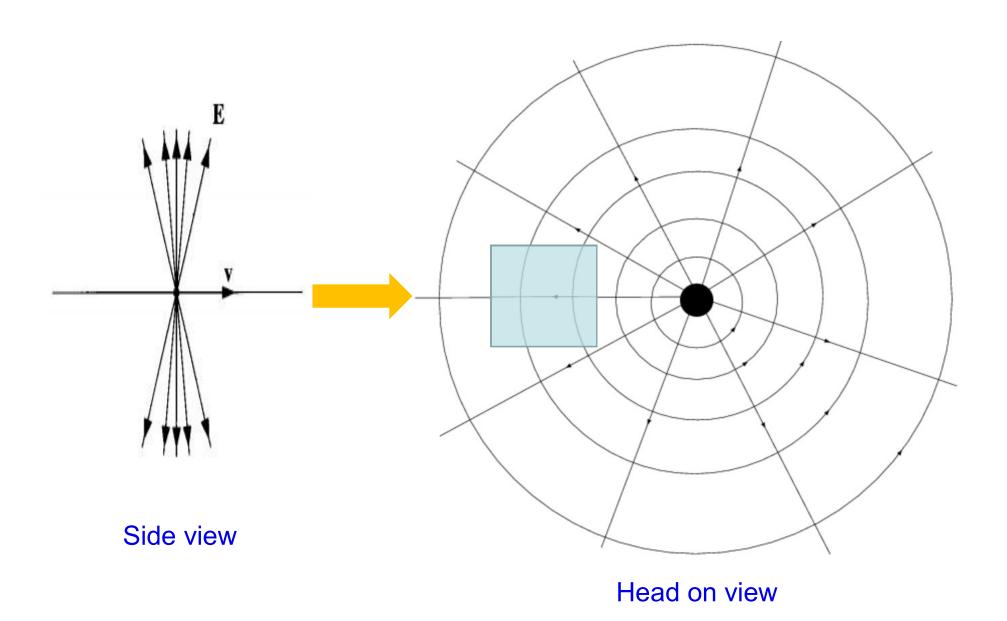
$$K_{\tau} \leq 1/R_A$$

$$d\sigma \propto Z^4$$
 clean background

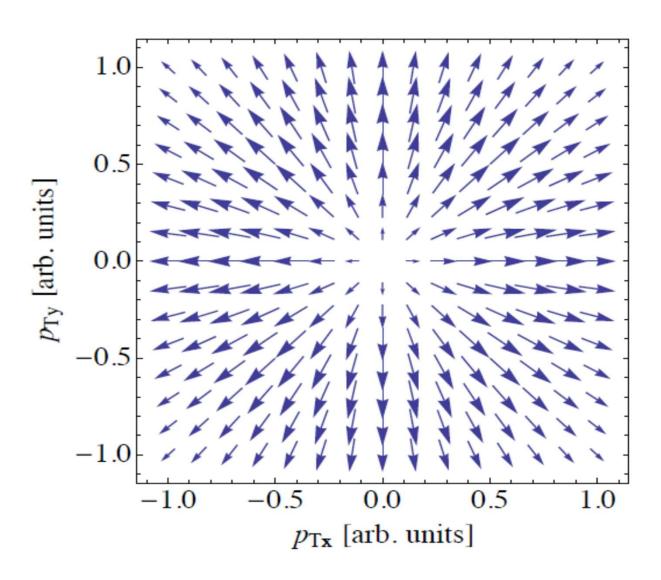
$$\gamma - \gamma$$

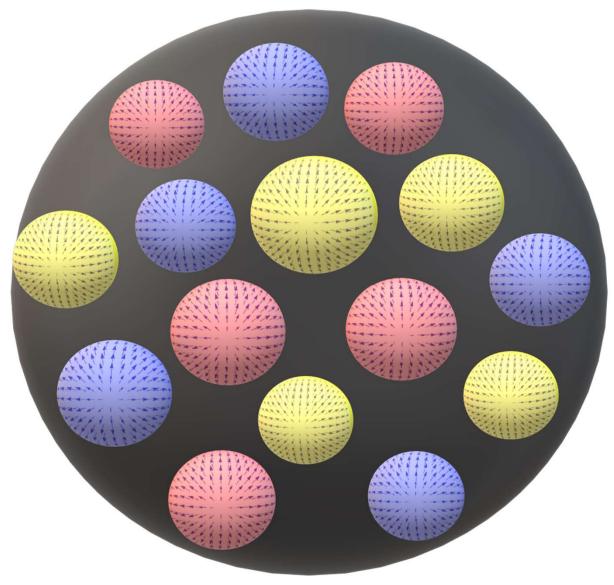
$$\gamma - \mathbf{A}$$

The boosted Coulomb potential



Transverse momentum phase space





CGC is highly linearly polarized state as well.

How to probe it?

Cos4¢ in di-lepton production

Cos 4¢ asymmetry in EM dilepton production

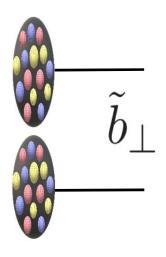
$$\gamma(x_1P + k_{1\perp}) + \gamma(x_2\bar{P} + k_{2\perp}) \rightarrow l^+(p_1) + l^-(p_2)$$

$$\langle \cos(4\phi) \rangle$$
 $\phi = P_{\perp} \wedge q_{\perp}$

$$P_{\perp} \equiv (p_{1\perp} - p_{2\perp})/2$$
 $q_{\perp} \equiv p_{1\perp} + p_{2\perp}$

correlation limit: $P_{\perp} \gg q_{\perp}$

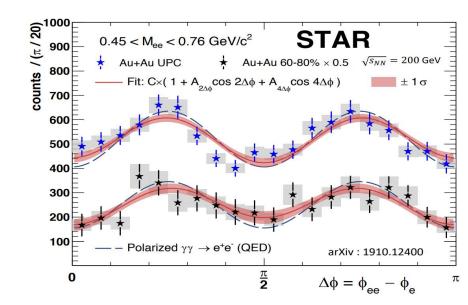
Impact parameter dependence



See also Bowen and Wangmei's talk

- $\succ b_{\perp}$ dependent formula established(unpolarized cross section)
 - M. Vidovic, M. Greiner, C. Best and G. Soff; 93
- Successfully describes dilepton qt broadening effect
 - W. Zha, J. D. Brandenburg, Z. Tang and Z. Xu, 2019
 - S. Klein, A. H. Mueller, B.W. Xiao and F. Yuan, 2020
 - Formulation in terms of photon Wigner distribution
 - S. Klein, A. H. Mueller, B.W. Xiao and F. Yuan, 2020 M. K. Gawenda, W. Schafer and A. Szcurek, 2020

\tilde{b} | dependent $\langle \cos(4\phi) \rangle$ V.S. STAR experiment



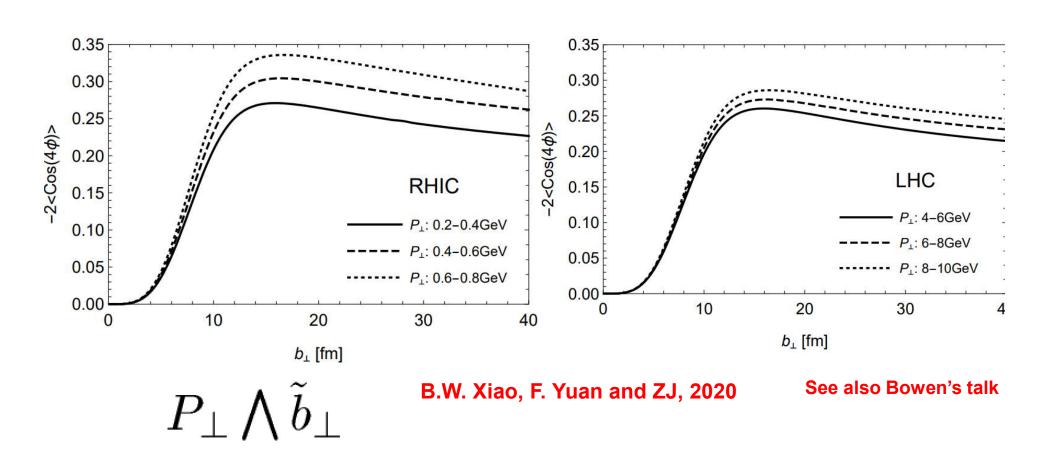
Daniel Brandenburg, QM 2019

0.45GeV²<Q²<0.76GeV² P_t>200MeV, |y|<1,q_t<100MeV

C. Li, JZ and Y. Zhou, 2020

	Measured	QED calculation
Tagged UPC	$16.8\% \pm 2.5\%$	16.5%
60%-80%	$27\% \pm 6\%$	34.5%

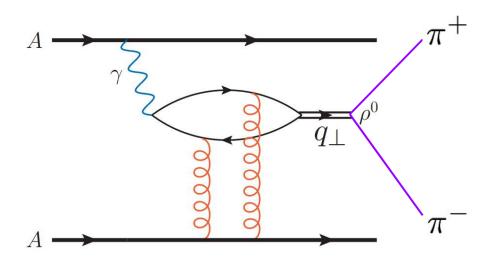
Cos4φ: the correlation bt and Pt in PCs



The manifestation of the linear polarization of photons in another way.

Cos2¢ in p production

As a probe to study novel QCD phenomenology



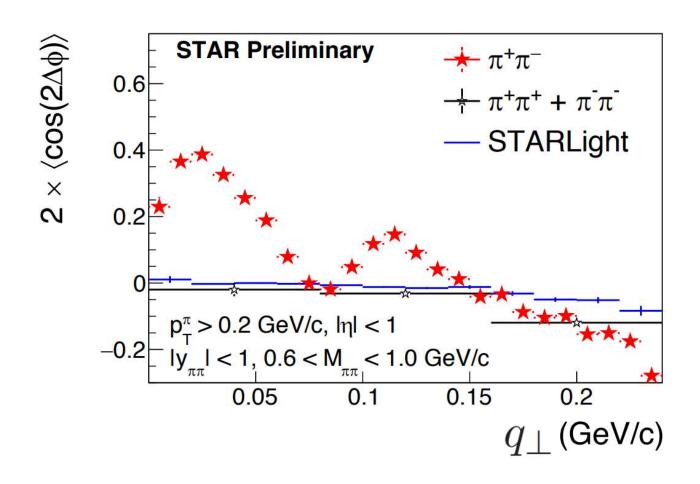
A $\cos(2\phi)$ azimuthal asymmetry is induced by linearly polarized photons.

 ϕ is the angle between q_{\perp} and p_{\perp}^{π}

 $q \perp : \rho^0$ transverse momentum

 p^π_\perp : pion's transverse momentum.

$\cos(2\phi)$ STAR measurement



Dipole model calculation

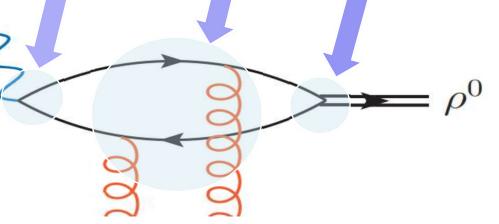
Diffractive scattering amplitude(based on dipole model)

$$\mathcal{A}(\Delta_{\perp}) = i \int d^2b_{\perp} e^{i\Delta_{\perp} \cdot b_{\perp}} \int \frac{d^2r_{\perp}}{4\pi} \int_0^1 dz \underbrace{\Psi^{\gamma \to q\bar{q}}(r_{\perp}, z, \epsilon_{\perp}^{\gamma})} \underbrace{N(r_{\perp}, b_{\perp})} \underbrace{\Psi^{V \to q\bar{q}*}(r_{\perp}, z, \epsilon_{\perp}^{V})} \underbrace{\Psi^{V \to q\bar{q}*}(r_{\perp}, z$$

M. G. Ryskin, 93

S. J. Brodsky, L. Frankfurt, J. F. Gunion, A. H. Mueller and M. Strikman, 94

Coherent: summing up amplitude → squaring it Incoherent: squaring the amplitude → summing up



Formulated in the Glauber multiple re-scattering model:

Spin dependent wave function

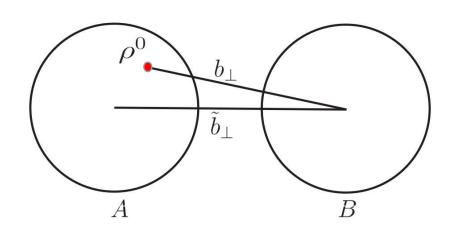
$$\sum_{a,a',\sigma,\sigma'} \Psi^{\gamma \to q\bar{q}} \Psi^{V \to q\bar{q}*} = \underbrace{\left(\epsilon_{\perp}^{V*} \cdot \epsilon_{\perp}^{\gamma}\right)}_{2\pi} \underbrace{\frac{ee_q}{2\pi}}_{2N_c} \int \frac{d^2r_{\perp}}{4\pi} N(r_{\perp},b_{\perp}) \left\{ \left[z^2 + (1-z)^2 \right] \times \underbrace{\frac{\partial \Phi^*(|r_{\perp}|,z)}{\partial |r_{\perp}|}}_{\frac{\partial |r_{\perp}|}{\partial |r_{\perp}|} \underbrace{\frac{\partial K_0(|r_{\perp}|e_f)}{\partial |r_{\perp}|}}_{\frac{\partial |r_{\perp}|}{\partial |r_{\perp}|} + m_q^2 \Phi^*(|r_{\perp}|,z) K_0(|r_{\perp}|e_f) \right\}$$

Spin correlation: SCHC Star measurement Phys. Rev. C 77 (2008)

Linear polarization of photons implies:

$$\epsilon_{\perp}^{\gamma}$$
 // k_{\perp}

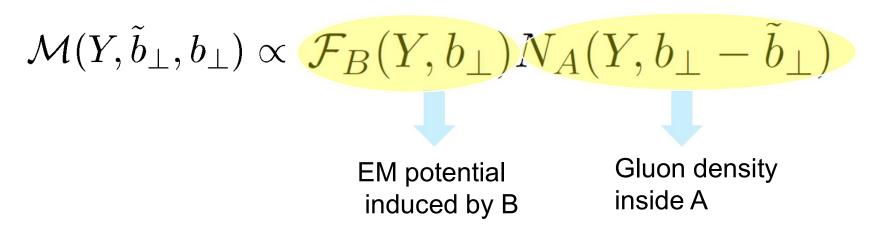
Joint \tilde{b}_{\perp} & q_{\perp} dependent cross section I



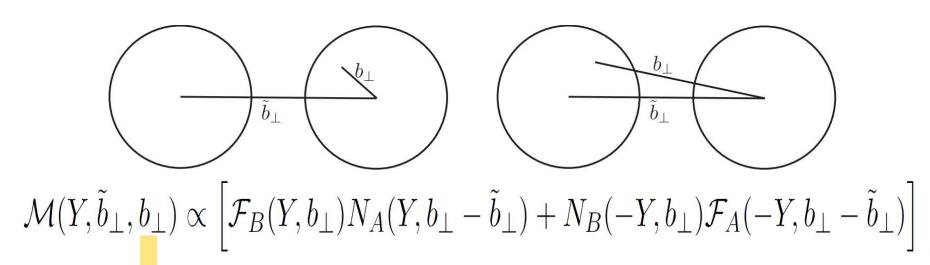
A and B are two incoming nuclei (head on view)

Assuming ho^0 is locally produced at position b_\perp

The probability amplitude of producing ho^0 at position $oldsymbol{b}_\perp$



Joint \tilde{b}_{\perp} & q_{\perp} dependent cross section II



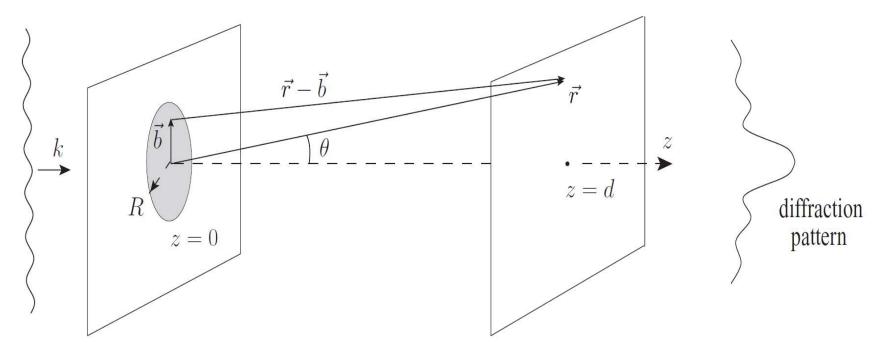
Making Fourier transform:

$$\mathcal{M}(Y, \tilde{b}_{\perp}, q_{\perp}) \propto \int d^{2}k_{\perp}d^{2}\Delta_{\perp}\delta^{2}(q_{\perp} - \Delta_{\perp} - k_{\perp})$$

$$\times \left\{ \mathcal{F}_{B}(Y, k_{\perp})N_{A}(Y, \Delta_{\perp})e^{-i\tilde{b}_{\perp} \cdot k_{\perp}} + \mathcal{F}_{A}(-Y, k_{\perp})N_{B}(-Y, \Delta_{\perp})e^{-i\tilde{b}_{\perp} \cdot \Delta_{\perp}} \right\}$$

- \succ The \widetilde{b}_{\perp} dependence enters via the phase.
- > The relative phase leads to the destructive interference effect.

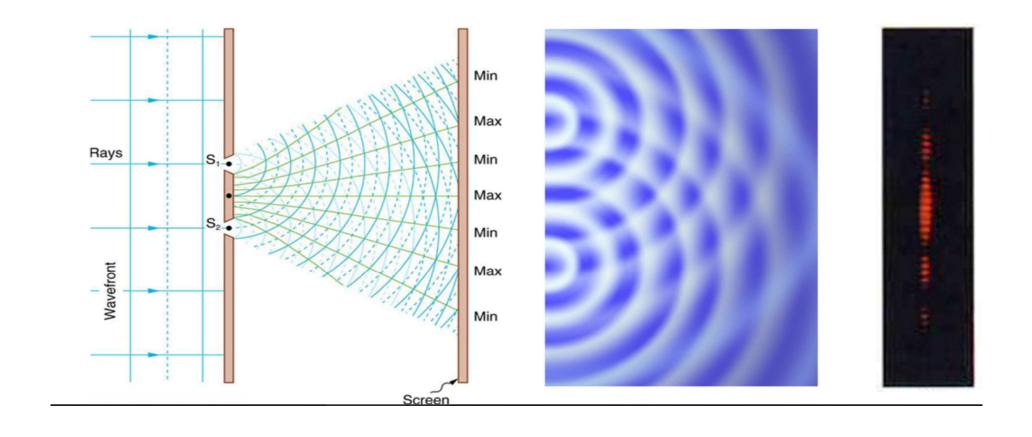
Diffractive pattern



Taken from Yuri's book

$$\frac{d\sigma}{dt} = \pi R^2 \frac{J_1^2 \left(\sqrt{|t|}R\right)}{|t|}$$

Young's double-slit experiment in heavy ion collisions



Joint $\, \widetilde{b}_{\perp} \, \& \, q_{\perp} \, {\sf dependent} \, {\sf cross} \, {\sf section} \, {\sf III} \,$

Full cross section: $k_{\perp} + \Delta_{\perp} = k'_{\perp} + \Delta'_{\perp}$

$$\frac{d\sigma}{d^{2}q_{\perp}dYd^{2}\tilde{b}_{\perp}} = \frac{1}{(2\pi)^{4}} \int d^{2}\Delta_{\perp}d^{2}k_{\perp}d^{2}k'_{\perp}\delta^{2}(k_{\perp} + \Delta_{\perp} - q_{\perp})(\epsilon_{\perp}^{V*} \cdot \hat{k}_{\perp})(\epsilon_{\perp}^{V} \cdot \hat{k}'_{\perp}) \left\{ \int d^{2}b_{\perp} \times e^{i\tilde{b}_{\perp} \cdot (k'_{\perp} - k_{\perp})} \left[T_{A}(b_{\perp}) \mathcal{A}_{in}(Y, \Delta_{\perp}) \mathcal{A}_{in}^{*}(Y, \Delta'_{\perp}) \mathcal{F}(Y, k_{\perp}) \mathcal{F}(Y, k'_{\perp}) + (A \leftrightarrow B) \right] + \left[e^{i\tilde{b}_{\perp} \cdot (k'_{\perp} - k_{\perp})} \mathcal{A}_{co}(Y, \Delta_{\perp}) \mathcal{A}_{co}^{*}(Y, \Delta'_{\perp}) \mathcal{F}(Y, k_{\perp}) \mathcal{F}(Y, k'_{\perp}) \right] + \left[e^{i\tilde{b}_{\perp} \cdot (\Delta'_{\perp} - \Delta_{\perp})} \mathcal{A}_{co}(Y, \Delta_{\perp}) \mathcal{A}_{co}^{*}(-Y, \Delta'_{\perp}) \mathcal{F}(Y, k_{\perp}) \mathcal{F}(-Y, k'_{\perp}) \right] + \left[e^{i\tilde{b}_{\perp} \cdot (k'_{\perp} - \Delta_{\perp})} \mathcal{A}_{co}(Y, \Delta_{\perp}) \mathcal{A}_{co}^{*}(Y, \Delta'_{\perp}) \mathcal{F}(Y, k_{\perp}) \mathcal{F}(Y, k_{\perp}) \mathcal{F}(Y, k'_{\perp}) \right] \right\}, \tag{2.14}$$

H.X. Xing, Z. Zhang, ZJ, Y.J. Zhou, 2020

EM potential:
$$\mathcal{F}(Y,k_\perp)=rac{Z\sqrt{lpha_e}}{\pi}|k_\perp|rac{F(k_\perp^2+x^2M_p^2)}{(k_\perp^2+x^2M_p^2)}$$

Two remarks

ightharpoonup Integrate out \tilde{b}_{\perp} , producing $\delta^2(k_{\perp}-k_{\perp}')$ $\delta^2(\Delta_{\perp}-k_{\perp}')$

$$\begin{split} &\frac{d\sigma}{d^2q_{\perp}dY} = \frac{1}{(2\pi)^4} \int d^2k_{\perp}x f(x,k_{\perp}) \bigg\{ 1 + \cos 2\phi \left[2(\hat{q}_{\perp} \cdot \hat{k}_{\perp})^2 - 1 \right] \bigg\} \\ &\left\{ A_{co}(Y,\Delta_{\perp}) \mathcal{A}_{co}^*(Y,\Delta_{\perp}) \mathcal{F}(Y,k_{\perp}) \mathcal{F}(Y,k_{\perp}) - A_{co}(-Y,\Delta_{\perp}) \mathcal{A}_{co}^*(-Y,\Delta_{\perp}) \mathcal{F}(-Y,k_{\perp}) \mathcal{F}(-Y,k_{\perp}) \right\} \end{split}$$

lacktriangle When Y=0, complete destructive interference.

S. R. Klein and J. Nystrand,2000

Incoherent production doesn't contribute to the asymmetry

 Δ_{\perp} distribution is very flat

$$\int d^2k_{\perp}x f(x,k_{\perp}) \left[2(\hat{q}_{\perp} \cdot \hat{k}_{\perp})^2 - 1 \right] = 0$$

Some model inputs

- Gluon distribution/Dipole amplitude: GBW model for a nucleon
- Charge distribution: Woods-Saxon distribution.
- Nucleon distribution inside a nucleus: Modified WS distribution

Nuclear strong interaction radius should be slightly larger than its EM radius due to neturon skin effect and possible pion cloud effect

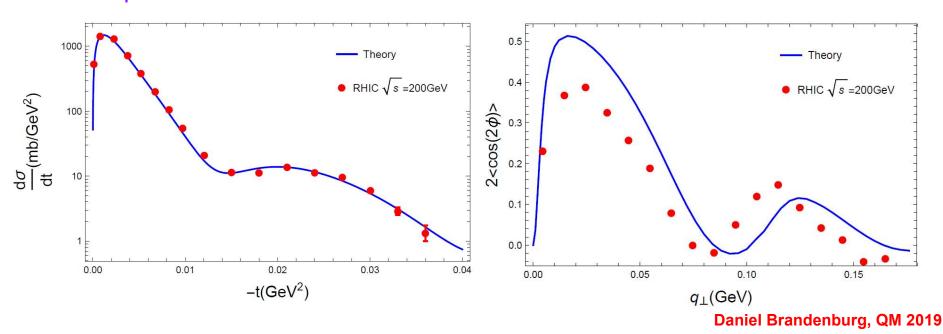
- Vector meson wave function: taken from H. Kowalski and D. Teaney, 2003
- Quasi-real photon wave function: QED
- Computing "Xn" events with,

$$2\pi \int_{2R_A}^{\infty} \tilde{b}_{\perp} d\tilde{b}_{\perp} P^2(\tilde{b}_{\perp}) d\sigma(\tilde{b}_{\perp}, \ldots) \qquad P(\tilde{b}_{\perp}) = 1 - \exp\left[-P_{1n}(\tilde{b}_{\perp})\right]$$

ho^0 production in UPCs

Unpolarized cross section

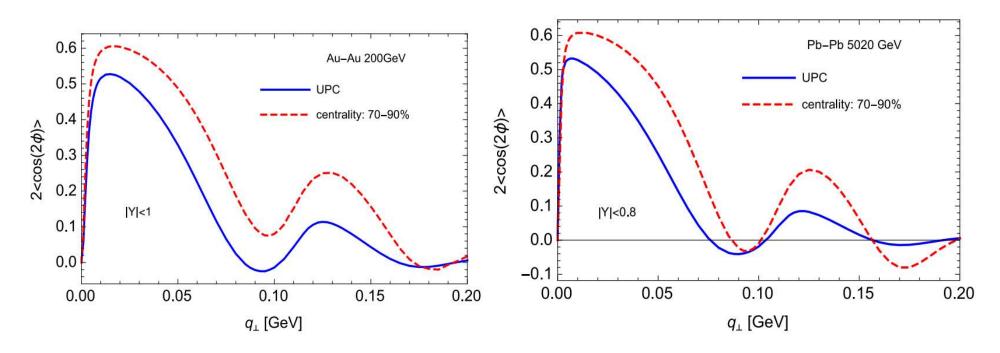
Cos2¢ azimuthal asymmetry



e-Print: 2006.06206; H.X. Xing, C. Zhang, J. Zhou and Y. J. Zhou; 2020

Gold target	Skin depth	Strong interaction radius
Standard value	0.54fm	6.38fm
Fitted to STAR data	0.64fm	6.9fm

Predications for PCs at RHIC and LHC energies

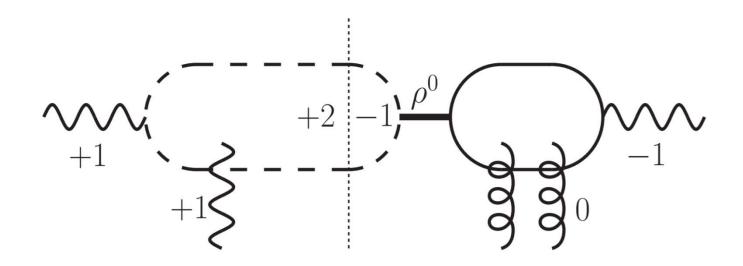


The diffractive shape is sensitive to the distance between two colliding nuclei.

> EIC: one slit; UPCs: two slits

Cosp and Cos3p in di-pion production

Coulomb nuclear interference



EM production V.S. via ρ decay

EM: 1/t

QCD: nuclear form factor F(t=0)

EM and QCD amplitudes

Low momentum transfer, pion treated as a point like particle in EM production:

$$\mathcal{M}_{\gamma\gamma\to\pi\pi} = 2e^2 \left[\epsilon_{\perp 1}^{\gamma} \cdot \epsilon_{\perp 2}^{\gamma} - \frac{2P_{\perp}^2}{P_{\perp}^2 + m_{\pi}^2} (\epsilon_{\perp 1}^{\gamma} \cdot \hat{P}_{\perp}) (\epsilon_{\perp 2}^{\gamma} \cdot \hat{P}_{\perp}) \right]$$

QCD amplitude:

$$\mathcal{M}_{\rho \to \pi^{+}\pi^{-}} = i \left[\mathcal{A}_{co}(x_g, \Delta_{\perp}) + \mathcal{A}_{in}(x_g, \Delta_{\perp}) \right] f_{\rho \pi \pi} \frac{P_{\perp} \cdot \epsilon_{\perp}^{V}}{Q^2 - M_{\rho}^2 + i M_{\rho} \Gamma_{\rho}}$$

with

$$\mathcal{A}_{co}(x_g, \Delta_{\perp}) = \int d^2b_{\perp}e^{-i\Delta_{\perp} \cdot b_{\perp}} \int \frac{d^2r_{\perp}}{4\pi} N(r_{\perp}, b_{\perp}) [\Phi^*K](r_{\perp})$$

$$\mathcal{A}_{in}(x_g, \Delta_{\perp}) = \sqrt{A} 2\pi B_p e^{-B_p \Delta_{\perp}^2/2} \left[\int \frac{d^2r_{\perp}}{4\pi} \mathcal{N}(r_{\perp}) e^{-2\pi (A-1)B_p T_A(b_{\perp})\mathcal{N}(r_{\perp})} [\Phi^*K](r_{\perp}) \right]$$

Azimuthal dependent cross section

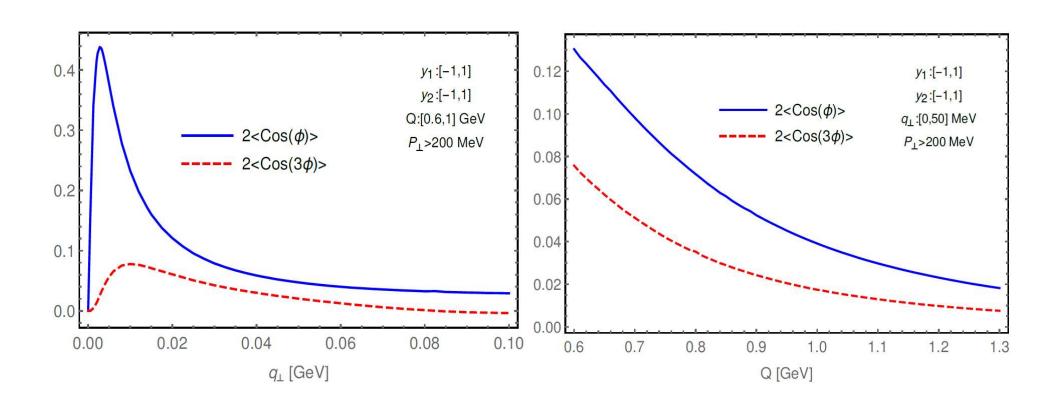
$$\frac{d\sigma_{I}}{d^{2}p_{1\perp}d^{2}p_{2\perp}dy_{1}dy_{2}d^{2}\tilde{b}_{\perp}} = \frac{\alpha_{e}}{Q^{2}} \frac{1}{(2\pi)^{4}} \frac{1}{\sqrt{4\pi}} \frac{2M_{\rho}\Gamma_{\rho}|P_{\perp}|f_{\rho\pi\pi}}{(Q^{2}-M_{\rho}^{2})^{2}+M_{\rho}^{2}\Gamma_{\rho}^{2}} \int d^{2}\Delta_{\perp}d^{2}k_{\perp}d^{2}k_{\perp}' d^{2}k_{\perp}' d^{2}k_{\perp}$$

Yoshikazu Hagiwara, Cheng Zhang, ZJ and Ya-jin Zhou, 2020

Interesting observation:

Interference CS vanishes identically when integrating out \$\phi\$

Numerical results



Constrain the phase of the dipole amplitude

Summary

- > Coherent photons excited by charged heavy ion are linearly polarized
- > Rich physics is revealed via azimuthal asymmetries in UPCs
- > J/ψ diffractive production.... EIC case.....

Thank you!

