Workshop: Open questions in photon-induced interactions from relativistic nuclear collisions to the future EIC April 26-28, 2021, Online meeting.

Vector Meson photoproduction in UPCs at the LHC

Guillermo Contreras

Czech Technical University in Prague

Workshop: Open questions in photon-induced interactions from relativistic nuclear collisions to the future EIC April 26-28, 2021, Online meeting.

Vector Meson photoproduction in UPCs at the LHC

Guillermo Contreras

Czech Technical University in Prague

Workshop: Open questions in photon-induced interactions from relativistic nuclear collisions to the future EIC April 26-28, 2021, Online meeting.

Vector Meson photoproduction in UPCs at the LHC

Czech Technical University in Prague

Guillermo Contreras

The physics we are interested in (in a nutshell)

The physics we are interested in (in a nutshell)

The physics we are interested in (in a nutshell)

What do we know about the physics we are interested in ? (In a nutshell)

0.8

xf

0.6

The gluon distribution in the proton dominates for decreasing x where it grows as a power law

0.2

What do we know about the physics we are interested in ? (In a nutshell)

xf

The gluon distribution in the proton dominates for decreasing x where it grows as a power law

Concentrate on processes highly sensitive to the gluon content in hadrons

pQCD is in here

How does this process looks like in reality?

Two muons from the decay of the J/ψ and nothing else

How does this process looks like in reality?

Two muons from the decay of the J/ψ and nothing else

How does this process looks like in reality?

J/ψ candidate in Pb-Pb UPC in ALICE

Open question: How to trigger/select these events? Two muons from the decay of the J/ψ and nothing else

Open question: How to ensure 'nothing else'?

V

Expectations: The gluon distribution raises as a power law with decreasing x

The cross section raises as a power law until it saturates

J/ψ

3 orders of magnitude in x are covered with one detector!

J/ψ

3 orders of magnitude in x are covered with one detector!

J/ψ

J/ψ

Rapidity dependence: the case for nuclei

J/ψ

J/ψ

Rapidity dependence: ambiguity problem

At low pT, RAA values a lot larger then 1 have been measured

J/ψ

⇒ coherent photoproduction process!

At low pT, RAA values a lot larger then 1 have been measured

J/ψ

⇒ coherent photoproduction process!

In coherent processes pT is related to the inverse of the size of the target hadron: expect very low pT off Pb ions

At low pT, RAA values a lot larger then 1 have been measured

J/ψ

⇒ coherent photoproduction process!

In coherent processes pT is related to the inverse of the size of the target hadron:

Rapidity dependence: Using EMD Guzey, Strikman, Zhalov, EPJ C74 (2014) 2942

Rapidity dependence: Using EMD Guzey, Strikman, Zhalov, EPJ C74 (2014) 2942

Rapidity dependence: Using EMD Guzey, Strikman, Zhalov, EPJ C74 (2014) 2942

Rapidity dependence: Using EMD Guzey, Strikman, Zhalov, EPJ C74 (2014) 2942

et Broz

Rapidity dependence: Using EMD Guzey, Strikman, Zhalov, EPJ C74 (2014) 2942

m

Vector meson mass: Lower the scale of the process

m

Vector meson mass: Lower the scale of the process

Expectations: Saturation appears earlier at lower scales

m

Continuous variation of scale using the virtuality of the photon Vector meson mass: Lower the scale of the process

Expectations: Saturation appears earlier at lower scales

m

Continuous variation of scale using the virtuality of the photon

EIC

Vector meson mass: Lower the scale of the process

But if the scale is too low, pQCD may not be applicable any more: Semi-hard scale ⇒ approach to the black-disc limit of QCD

Expectations: Saturation appears earlier at lower scales

m

Continuous variation of scale using the virtuality of the photon

EIC

Vector meson mass: Lower the scale of the process

But if the scale is too low, pQCD may not be applicable any more: Semi-hard scale ⇒ approach to the black-disc limit of QCD

Expectations: Saturation appears earlier at lower scales

At low scales, the cross section is larger ⇔more events available

ρ(770) in Pb-Pb as seen by ALICE

Testing the EMD method at midrapidity

ρ(770

17

Testing the EMD method at midrapidity

Models more or less follow the data, the idea seems to work!

ρ(770) in Pb-Pb as seen by ALICE

Testing the EMD method at midrapidity

Once the precision of the measurement goes to the percent level, implementation of the exclusivity condition requires care

The use of the same detector to measure UPCs and head-on **Pb-Pb collisions, jeopardises** single track sensitivity ⇒ the separation of peripheral and UPCs gets complicated

Once the precision of the measurement goes to the percent level, implementation of the exclusivity condition requires care

The precision is increased with more events \Rightarrow In Run 3+4 this implies more pile-up

The use of the same detector to measure UPCs and head-on **Pb-Pb collisions, jeopardises** single track sensitivity ⇒ the separation of peripheral and UPCs gets complicated

Once the precision of the measurement goes to the percent level, implementation of the exclusivity condition requires care

The precision is increased with more events \Rightarrow In Run 3+4 this implies more pile-up

The use of the same detector to measure UPCs and head-on **Pb-Pb collisions, jeopardises** single track sensitivity ⇒ the separation of peripheral and UPCs gets complicated

Once the precision of the measurement goes to the percent level, implementation of the exclusivity condition requires care

> **EMD also produces charged particles** \Rightarrow activity vetoes are inefficient

ρ(770) in p-Pb as seen by CMS: energy evolution

o(77(

ρ(770) in p-Pb as seen by CMS: energy evolution

ρ(770) in p-Pb as seen by CMS: energy evolution

$\rho(770)$ in p-Pb as seen by CMS: energy evolution

ρ(770) as seen by many experiments

ALICE, JHEP 06 (2020) 035

p(770) as seen by many experiments

⇒ no ambiguity

ρ(770) as seen by many experiments

⇒ no ambiguity

ρ(770) as seen by many experiments

Plot produced by **Joakim Nystrand** (personal communication, 2018)

 \Rightarrow no ambiguity

ρ(770) as seen by many experiments

Plot produced by Joakim Nystrand (personal communication, 2018)

Dependence of the gluon distribution on A

A

Dependence of the gluon distribution on A

D

A

Mass number dependence: Early appearance of saturation?

Dependence of the gluon distribution on A

A

Mass number dependence: Early appearance of saturation?

Momentum transferred at the target vertex

t

A window to transverse structure

Momentum transferred at the target vertex

t

Expectations: The distribution of gluons in the transverse plane is sensitive to saturation effects

A window to transverse structure

ALICE, PLB 817(2021) 136280

ALICE, PLB 817(2021) 136280

J/ψ in Pb-Pb UPC at midrapidity as seen by ALICE

J/ψ in Pb-Pb UPC at midrapidity as seen by ALICE

J/ψ in Pb-Pb UPC at midrapidity as seen by ALICE

<A2>-<A>2

Fluctuations of quantum fields

<A2>-<A>2

Expectations: The variance of fluctuations provides new signals of saturation

Incoherent production

Accessing quantum fluctuations

Models do not describe data, but large

uncertainties in models and in data

2S

Wave functions of excited states

2S

Wave functions of excited states

D

Excited states Constraining the wave function

Expectations:

The angular momentum structure of the wave function may enhance/suppress some effects

5

F

Studying new states

5

F

Studying new states

D

Vector meson mass: Are there new photoproduced states?

Expectations: Such a clean environment should be ideal to spot new states

ππ pairs in Pb-Pb as seen by ALICE

$\pi\pi$ pairs in Pb-Pb as seen by ALICE

$\pi\pi$ pairs in Pb-Pb as seen by ALICE

$\pi\pi$ pairs in Pb-Pb as seen by ALICE

EIC

Should also be accessible at the EIC

Instead of a summary

Accelerator and detectors optimised for something else, nonetheless we have managed to measure this:

Instead of outlook