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At high energies we expect to 
reach the saturation regime,

pQCD provides evolution 
equations to describe the change 
in the structure of a hadron when 

the energy or scale of the 
interaction is changed

CERN Courier 50, No. 6, July 2010, p.24

pQCD
Measure the structure of hadrons in terms of quarks 

and gluons at different scales and  energies
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3

The gluon distribution in the 
proton dominates for decreasing 
x  where it grows as a power law

H1 and Zeus, EPCJ 75 (2015) 580

Concentrate on processes highly 
sensi@ve to the gluon content in hadrons
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QED is in here
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Interesting recent 
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to the gluon distribution
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How does this process looks like in reality?

5

Two muons from the decay of the 
J/ψ and nothing else

J/ψ candidate in Pb-Pb UPC in ALICE

Open question:
How to ensure ‘nothing else’?

Open question:
How to trigger/select these events?



Rapidity dependence 
⇨ x evolution

Rapidity dependence

6

y

x =
m

s
ey



Rapidity dependence 
⇨ x evolution

Rapidity dependence

6

y

x =
m

s
ey

Expecta@ons: 
The gluon distribu@on raises as a power law with decreasing x 

⇨ 
The cross sec@on raises as a power law un@l it saturates
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Rapidity dependence: p-Pb results from ALICE
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Open question:
Where is saturation?

ALICE, EPJ C79 (2019) 402

All types of models describe data: 
VDM, DGLAP, BFKL, CCG …

3 orders of magnitude in x are 
covered with one detector!

J/ψ

Cross section grows 
as a power law



Rapidity dependence: the case for nuclei
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Accardi et al, EPJA 52 (2016) 268

Saturation is expected to set 
in earlier in heavier nuclei
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Rapidity dependence: ALICE results in Pb-Pb

9

ALICE, 2101.04577

Nuclear suppression factor 
for x~10-3 is 0.65±0.03

Impulse approximation

Open question:
Where is saturation?

Try to plot vs x?

J/ψ

No model describes all data

Open question:
How much of shadowing is saturation?
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ALICE, 2101.04577

95% x~3.3 10-2

5% x~1.1 10-5
1
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60% x~0.7 10-2

40% x~5.1 10-5
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50% each x~1. 10-3
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Rapidity dependence: ambiguity problem

12

JGC, PRC 96, 015203 (2017) 

1

2

Two sources
Another independent measurement 

needed at the same rapidity

Up to now, two options: 
 

Measure the same process in 
peripheral collisions 

Measure the same process with 
electromagnetic dissociation (EMD)

Both options select different 
regions of the impact parameter

Open question: how to disentangle both contributions?
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Rapidity dependence: From ultra + peripheral collisions measured by ALICE

14

JGC, PRC 96, 015203 (2017) 

3 orders of magnitude in x are starting to 
be covered with one detector!

Open question:
Where is saturation?

Here? Just being provocative :)

Peripheral: small impact parameter

UPC: large impact parameter
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 Guzey, Strikman, Zhalov, EPJ C74 (2014) 2942

0n0n: large impact parameters
0nXn: smaller impact parameters

XnXn: smallest impact parameters
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Few events in XnXn wrt 0n0n
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Vector meson mass:  
Lower the scale of the process

Dependence on the scale of the process

16

m

Expecta@ons: 
Satura@on appears earlier at lower scales 

But if the scale is too low, pQCD may 
not be applicable any more:

Semi-hard scale ⇨ approach to the 
black-disc limit of QCD

Con@nuous varia@on of scale using 
the virtuality of the photon

EIC
At low scales, the cross section is larger  

⇨more events available
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Tes@ng the EMD method at midrapidity

To be applied to J/ψ data at  all rapidi@es
Run 2

ρ(770)



Parenthesis: a comment on the exclusivity condi/on

18

Once the precision of the measurement goes to the percent level, 
implementa@on of the exclusivity condi@on requires care



Parenthesis: a comment on the exclusivity condi/on

18

Once the precision of the measurement goes to the percent level, 
implementa@on of the exclusivity condi@on requires care

The use of the same detector to measure UPCs and head-on  
Pb-Pb collisions, jeopardises  single track sensi@vity  

⇨ the separa@on of peripheral and UPCs gets complicated



Parenthesis: a comment on the exclusivity condi/on

18

Once the precision of the measurement goes to the percent level, 
implementa@on of the exclusivity condi@on requires care

The precision is increased with more events 
⇨ In Run 3+4 this implies more pile-up

The use of the same detector to measure UPCs and head-on  
Pb-Pb collisions, jeopardises  single track sensi@vity  

⇨ the separa@on of peripheral and UPCs gets complicated



Parenthesis: a comment on the exclusivity condi/on

18

Once the precision of the measurement goes to the percent level, 
implementa@on of the exclusivity condi@on requires care

The precision is increased with more events 
⇨ In Run 3+4 this implies more pile-up

The use of the same detector to measure UPCs and head-on  
Pb-Pb collisions, jeopardises  single track sensi@vity  

⇨ the separa@on of peripheral and UPCs gets complicated

EMD also produces charged par@cles 
⇨ ac@vity vetoes are inefficient

Slide from Igor Pshenichnov 
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to measure this at higher energies
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How does this rise with energy looks like for Pb?
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Open question:
Have we reached the black-disc limit?
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Dependence of the gluon distribu/on on A
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Many different nuclei can be studied
EIC

Expecta@ons: 
Different A dependence of a pure nuclear form 

factor and of the black-disc limit
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Momentum transferred at the target vertex
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|t|

|t| dependence 
⇨ 

 A window to transverse structure

Expecta@ons: 
The distribu@on of gluons in the transverse 

plane is sensi@ve to satura@on effects
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Very clear signals

A shadowing based, and a BK 
computation with impact-parameter 

dependence, close to data

Open question:
How much of shadowing is saturation?

Does the answer depend on |t|?

Open question:
Can we reach larger |t| at the LHC?

Use 0n0n events to suppress incoherent production

J/ψ

A model based on the form factor does 
not describe data
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Fluctua/ons of quantum fields

25

<A2>-<A>2

Incoherent production 
⇨ 

Accessing quantum fluctuations

Expecta@ons: 
The variance of fluctua@ons provides new 

signals of satura@on 
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Sub-nucleon fluctuations
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Open question:
Can we constraint the knowledge of the wave function?
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Constraining the wave function

Wave func/ons of excited states

27

2S

Expecta@ons: 
The angular momentum structure of the wave 
func@on may enhance/suppress some effects
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Some models that described the J/ψ cross 
section do not describe ψ(2S) so well

Open question:
How much can we constrain the modelling of the 
wave function by comparing 1S and 2S states?

Q2 dependence important in this context
EIC

Cepila et al, EPJC 79 (2019) 6, 495
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Expecta@ons: 
Such a clean environment should be ideal to 

spot new states
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Should also be accessible at the EIC
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Accelerator and detectors op@mised for something else, 
nonetheless we have managed to measure this:

LHC/RHIC

I am sure that measurements at EICs will be be`er than 
whatever we imagine today

EICs


