https://indico.bnl.gov/event/10155/overview

Summary of CFNS workshop

Open Questions in Photon-induced Interactions from Relativistic Nuclear Collisions to the Future Electron-Ion Collider

Wei Li¹, Bjoern Schenke², Kong Tu², and Thomas Ullrich²

1. Rice University

2. BNL

05.24.2021

Exclusivity

- 1. Photon-photon interactions
- 2. Diffractive VM productions
- 3. Collectivity

Main topics of the April workshop

Exclusivity

Main topics of the April workshop

Exclusivity

Main topics of the April workshop

Target source density distributions

Exclusivity

1. Photon-photon interactions

2. Diffractive VM productions

3. Collectivity

Main topics of the April workshop

One or both sides replaced by a photon What would happen?

Photon-Photon interactions

Light-sabers in UPCs?

Photon-photon interactions – recent data on acoplanarity, $\alpha = 1 - |\Delta \phi| / \pi$

b dependence of photon flux p_T well established by new experimental results in neutron multiplicity classes (CMS and ATLAS data appear to be consistent)

Open question:

- Is empirical fitting to separate LO and HO contributions robust?
- What contributes to the HO (tail of α dist.) and how to properly describe them?

Photon energy spectrum in the data harder than STARLight

Open question:

- Is it also related to initial photon p_T ?
- Requirement of b>R in STARLight? Sensitivity to charge distribution inside nucleus event-by-event?
- HO contribution missing?

P. Steinberg

Theoretical development

Open question:

- Are two approaches equivalent? While they both predict b dependent photon flux pT, they appear to be different quantitatively
- What is the advantage/benefit of Wigner function approach if the process can be calculated by QED?

Crucial to understand for the most robust baseline prediction

Higher-order QED contribution

Z α ~0.6 for Au and Pb

Cross section data require HO QED

Open question:

- Do other contributions, such as semi-coherent, need to be considered?
- What is the effect on alpha distribution?

Need a serious (collaborative) effort to establish a new, state-of-theart MC generator for photon-photon interactions, which includes:

- b-dependent photon flux p_T
- all major backgrounds: semi-coherent, high-order QED
- Integration for b<R
- modeling of nuclear break up (FLUKA and others)

Open question:

- What's the best way to coordinate and proceed?
- Collaboration with BeAGLE?

Are there EM effects from QGP Medium?

Are there physics beyond standard model in photon-photon?

We have to first answer the **open questions** earlier

Vector Meson

VM productions off protons

Differential cross section −*t* → spatial distributions

(gluon radius vs charge radius)

Open questions:

- Precision on protons ?
- Smaller gluon-radius ?

15

VM productions off heavy nucleus

Differential cross section -t \rightarrow spatial distributions

Open questions:

- Diffractive pattern $\rightarrow b_T$
- Best from rho but not good enough (Why is it so hard?)
- Separation of coh. and incoh.

19

25

VM Theory/Model

- Guzey: Leading twist model of nuclear shadowing (Glauber Gribov shadowing + QCD factorization theorems) also dijet production Mäntysaari: Dipole picture, CGC framework
- What exactly do the two approaches have in common and what distinguishes them?
- Gluon nPDF constrained by diffractive VM measurements included in PDF analysis?

ALICE data at the cross section level?

No model predicts the entire y dependence of the ALICE data

Also: normalization uncertainty from J/ψ wf, does not completely cancel in nuclear suppression ratio (=ratio to imp. approx.)

VM Theory/Model

|t| spectra steeper in the data than any model Especially lowest |t| point cannot be described

Interference important for that point? Removed in the data - ALICE paper gives correction factor Missing: y and \sqrt{s} dependence of the incoherent cross section How do the incoherent cross section and e-b-e fluctuations depend on x_P ?

Measurements at high |t| (to uncover substructure). Problems at LHC? Up to 1 GeV^2 feasible soon.

PHOTOPRODUCTION OF J/ψ at threshold

Y. Hatta

Unique opportunity to probe gluon gravitational form factors, D-term and trace anomaly.

Measurement: high Q², W=4.4 GeV (J/Psi) (Possible at EIC)

Collectivity

Ridge and collectivity

Collectivity in all hadronic collisions at sufficient high multiplicity

Ridge and collectivity

Collectivity in all hadronic collisions at sufficient high multiplicity

Ridge and collectivity

Collectivity in all hadronic collisions at sufficient high multiplicity

Collectivity "LOOK-UP" table

	e⁺e⁻	ep (DIS)	γp	γA	pp,pA,AA
N _{trk} reach	30	30	30	60	>100
Ridge	Х	Х	Х	Х	\checkmark
Collective v _n	?	Х	?	\checkmark	\checkmark
$C_n{4} < 0$?	Х	Х	?	\checkmark
PID flow	?	?	?	?	\checkmark
Heavy flavor	?	?	?	?	\checkmark
	?	?	?	?	\checkmark
Current Model	ΡΥΤΗΙΑ	RAPGAP LEPTO	PYTHIA +Delphes	CGC	Hydro/CGC

No sign of collectivity except γA Electron Ion Colliders will provide more data for further exploration A chance to seek out what exactly are beyond/beneath hydro

Photon-induced collectivity?

Z. Chen

 $CGC \: v_2 \propto 1/B_p \propto max[Q^2, \Lambda_{QCD}{}^2]$

Collective $v_2 \rightarrow 0$ in DIS

A rising and following trend vs Q²? Key measurement at EICs

With current interpretation vA vs vp should be like VM*+A vs VM*+p

Collectivity in sufficient high multiplicity γp?

Open Questions

- High multiplicity in photon-A and photon-p?
- How high it needs to go?
- EIC with level-arm in Q^2 ?

• What is the origin of collectivity?

Summary of summary

- Diverse and rich physics in photon-induced interactions
- \rightarrow A bridge between the UPCs and the EIC.

Summary of summary

- Diverse and rich physics in photon-induced interactions
- \rightarrow A bridge between the UPCs and the EIC.
- Many lessons can be learned from current and near-term experiments, theory/model developments, etc...

"BACK TO THE FUTURE"

