

Measurements of strong QED interactions at RHIC and LHC

Shuai Yang Rice University

Workshop: RHIC Science Programs Informative Toward EIC in the Coming Years

Equivalent photon

Ultra-relativistic charged nuclei produce highly contracted EM field

Equivalent Photon ApproximationQuasi-real photon

Photon kinematics $\omega < \frac{\hbar \gamma}{R_A}$ (3 GeV @ RHIC, 80 GeV @ LHC) $p_T < \frac{\hbar}{R_A}$ (\mathcal{O} (30) MeV @ RHIC, LHC)

Photon-photon collisions

Modeling of $\gamma \gamma \rightarrow l^+ l^-$

$$> Photon flux: \quad n(k,r) = \frac{4Z^2\alpha}{k} \left| \int \frac{d^2q_{\perp}}{(2\pi)^2} q_{\perp} \frac{F(q)}{q^2} e^{iq_{\perp} \cdot r} \right|^2$$
Klein et al., CPC 212 (2017) 258
Zha et al., PLB 781 (2018) 182

> How to convolute two photons into l^+l^- ?

STARlight formalism:

$$\sigma(A + A \to A + A + l^{+} l^{-}) = \int_{R_{A}}^{\infty} \pi r_{1} d^{2} r_{1} \int_{R_{A}}^{\infty} \pi r_{2} d^{2} r_{2} \int_{0}^{2\pi} d\phi \, N(k_{1}, r_{1}) N(k_{2}, r_{2}) \sigma(\gamma \gamma \to l^{+} l^{-})$$

- Integrate **b** out \Rightarrow No **b** dependence of photon (lepton pair) p_T
- Radius cutoff \Rightarrow ~20% less yield & insensitive to form factor

Shuai Yang

Modeling of $\gamma \gamma \rightarrow l^+ l^-$

Klein et al., CPC 212 (2017) 258 Zha et al., PLB 781 (2018) 182 Klein et al., PRD 102 (2020) 094013 Zha et al., PLB 800 (2020) 135089

> Photon flux: $n(k,r) = \frac{4Z^2\alpha}{k} \left| \int \frac{d^2q_{\perp}}{(2\pi)^2} q_{\perp} \frac{F(q)}{a^2} e^{iq_{\perp} \cdot r} \right|^2$

Models in market

	STARlight	gEPA	QED
Form Factor	Point-like	Woods-Saxon	Woods-Saxon
γ intensity(b)	\checkmark	\checkmark	\checkmark
γ p _T (b)	Х	\checkmark	\checkmark
l^+l^- inside nucleus	Х	\checkmark	\checkmark
HO contribution	Х	Х	Χ 💠

Being addressed in calculations

No single available model covers all aspects

Shuai Yang

Exclusive $\gamma \gamma \rightarrow l^+ l^-$ production

Total cross section at RHIC

STAR, arXiv: 1910.12400 Klein et al., CPC 212 (2017) 258 Zha et al., PLB 800 (2020) 135089

Total cross section at RHIC

STAR, arXiv: 1910.12400 Klein et al., CPC 212 (2017) 258 Zha et al., PLB 800 (2020) 135089

Total cross section at LHC

ATLAS, arXiv:2011.12211

Total cross section at LHC

ATLAS, arXiv:2011.12211

- Good agreement with STARlight at mid y, but systematic increase at higher y
 - STARlight should underestimate ~20% l^+l^- rates

Total cross section at LHC

Good agreement with STARlight at mid y, but systematic increase at higher y

• STARlight should underestimate ~20% l^+l^- rates

$$\succ k_{min,max} = \frac{m_{\mu\mu}}{2} e^{\pm y_{\mu\mu}}$$

Shuai Yang

1.2

0.8

 10^{2}

10

 10^{3}

 $k_{\min,\max}$ [GeV]

Linearly polarized photons

J.D. Brandenburg, CFNS workshop 2021.04

- > Photon polarization direction $(\vec{\xi})$ is parallel to \vec{E}
- Recently realized, collision of linearly polarized photons lead to a cos(4Δφ) modulation [Li et al., PLB 795 (2019) 576]
 - $\cos(2\Delta\phi) \propto m_l^2/p_{T,l}^2$

$$\begin{split} \Delta \phi &= \Delta \phi[(l^+ + l^-), (l^+ - l^-)] \\ &\approx \Delta \phi[(l^+ + l^-), l^+] \end{split}$$

Linearly polarized photons

STAR, arXiv: 1910.12400

 \succ Firstly observed 6.7 $\sigma \cos 4\Delta \phi$ modulation

- Experimental evidence of linearly polarized photons
- Analogous to vacuum birefringence

Shuai Yang

From UPC to hadronic collisions

Non-exclusive $\gamma \gamma \rightarrow l^+ l^-$ production

Non-exclusive $\gamma \gamma \rightarrow l^+ l^-$ production

Consistent with 0 cos $2\Delta\phi$ modulation in e^+e^- > Observed 2.3 $\sigma \cos 2\Delta \phi$ modulation in $\mu^+\mu^-$

 $\cos(2\Delta\phi) \propto m_l^2/p_{T,l}^2$

Modification of lepton pairs

Shuai Yang

Puzzle of the physics origin

STAR, PRL 121 (2018) 132301 ATLAS, PRL 121 (2018) 212301

Final-state effect?

Shuai Yang

Puzzle of the physics origin

0000

STAR, PRL 121 (2018) 132301 ATLAS, PRL 121 (2018) 212301

0000

Final-state effect?

 $\otimes \vec{R}$

Zha et al., PLB 800 (2020) 135089

Initial-state effect?

- Described by lowest-order QED without medium effect
 - **b** dependence of initial photon p_T

Experimentally explore the puzzle

Control "centrality" in UPC

ZDC selections

α spectrum vs. neutron multiplicity

 \geq 0n0n (fewer neutrons) \Rightarrow XnXn (more neutrons)

• α spectrum becomes broad

α spectrum vs. neutron multiplicity

> 0n0n (fewer neutrons) \Rightarrow XnXn (more neutrons)

- α spectrum becomes broad
- Similar depletion in XnXn class with that in hadronic collisions at very small α

Shuai Yang

Decouple leading-order component

\succ Decouple α spectrum:

- Data: $\langle \alpha^{\text{core}} \rangle$ = (1227 ± 7 (stat) ± 8 (syst)) × 10⁻⁶
- STARlight: 1350 × 10⁻⁶

Shuai Yang

$\langle \alpha^{\rm core} \rangle$ vs. neutron multiplicity

>Strong (5.7 σ) neutron multiplicity dependence of $\langle \alpha^{core} \rangle$

26

- **b** dependence of initial photon p_T
- Qualitatively described by a leading order QED model Shuai Yang CFNS Workshop Brandenburg et al., arXiv: 2006.07365

HO contribution vs. neutron multiplicity

HO contribution vs. rapidity

► Increase HO contribution (dissociative assumption) vs. signed $y_{\mu\mu}$

HO contribution vs. rapidity

- Only the tail in OnXn has rapidity dependence
 - Other HO process(es) play a role?

$\langle m_{\mu\mu} \rangle$ vs. neutron multiplicity

CMS, arXiv:2011.05239

 \succ Strong neutron multiplicity dependence of $\langle m_{\mu\mu} \rangle$

- Deviation from constant: $\gg 5\sigma$
- b dependence of initial photon energy

Shuai Yang

Summary

\succ Exclusive l^+l^- production

- Linearly polarized photon
- b dependence of photon p_T
- Advanced generator needed for current/future precise data
 - Photon kinematics (PDF)
 - Higher-order $\gamma\gamma$ interactions

> Non-exclusive l^+l^- production

- Opportunity to study QGP EM properties "
- Require precise baseline

Shuai Yang

Backup

Light-by-light scattering

ATLAS, JHEP 03 (2021) 243

Generally good agreement with model, but indication of a systematic excess

Shuai Yang

Light-by-light scattering

ATLAS, JHEP 03 (2021) 243

- ➢ No ALP observed
- Most stringent limits set for cross section and coupling

α spectrum vs. neutron multiplicity

Shuai Yang

Rapidity dependence of $\langle \alpha^{core} \rangle$

 $\geq \langle \alpha^{core} \rangle$ has no rapidity dependence

- Core dominantly comes from LO $\gamma\gamma$ scattering
- Core function is reliable

Signatures of $\gamma \gamma \rightarrow l^+ l^-$

STAR, arXiv: 1910.12400

• θ' : angel between e⁺ and beam axis in pair rest frame

 \geq Individual l^+/l^- preferentially aligned along beam axis

EM filed mapping

Fit to STAR's measurement of $\gamma \gamma \rightarrow e^+e^-$ in UPC Map charge distribution and magnetic filed

Non-exclusive $\gamma \gamma \rightarrow l^+ l^-$ at RHIC

X.F. Wang, Initial Stages 2021

J. Zhou, sQM 2021

→ Indication for additional peak from semi-coherent $\gamma\gamma$ interactions → New measurement of $\gamma\gamma \rightarrow \mu^+\mu^-$ in 60-80% AuAu collisions