# Inclusive photonuclear processes: recent search for collectivity & opportunities with the STAR detector

**Prithwish Tribedy** 



RHIC Science Programs Informative Toward EIC in the Coming Years CFNS, Stony Brook University, May 24-26, 2021







- Introduction
- Lessons from HERA and LHC
- Opportunities with the STAR detector (model studies)

At fundamental levels conservation laws determine correlation among few particles



Momentum conservation





Momentum conservation

Δη

Δη=0

Δφ

At the fundamental level conservation laws determine correlation among few particles



#### p+p (Low multiplicity)



These correlations will not fill the full-phase space

(Conservation  $\Rightarrow$  perfect configurations)

Deviations from these perfect configurations or correlation among few particles  $\Rightarrow$  Important physics at play (often non-perturbative)



Momentum conservation

Collectivity ⇒ observation of a specific pattern or behavior that is followed by most of its constituents in a system

Observing correlations among many must be accompanied by a large scale deviation  $\Rightarrow$  interesting to study with decreasing system size

Au+Au  $\rightarrow$  p+A  $\rightarrow$  p+p  $\rightarrow$  e( $\gamma$ )+A  $\rightarrow$  e( $\gamma$ )+p  $\rightarrow$  e+e

# Inclusive processes in DIS



Events with  $Q^2 > 1$  are conventionally regarded as DIS Most ep events have  $Q^2 << 1$  and  $Q^2 -> 0$  photoproduction processes Until the BNL EIC is built UPCs provide an opportunity to study highenergy photoproduction processes (low virtuality limit of DIS)

### Lessons from HERA

#### Inclusive processes in DIS

#### Inclusive DIS at HERA



Typical HERA kinematics  $E_e=27.5 \text{ GeV}$   $E_p=920 \text{ GeV}$  0.0001 < x < 0.01  $5 < Q^2 < 100 \text{ GeV}^2$  (DIS)  $W_{YP} \sim 270 \text{ GeV}$  (Photoproduction)  $N_{trk}$  (HM) < 30



#### Search for collectivity in e-p collisions with ZEUS data

JHEP 04 (2020) 070,1912.07431 [hep-ex]



No sign of ridge

Azimuthal correlations —> consistent with expectations from momentum conservation & hard processes, well described by DIS models

# Collectivity in ep DIS with H1 data

Chuan Sun, H1 Collaboration, DIS 2021



https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-20-033.long.html

No near-side long-range ridge with H1 DIS data Results on  $V_{n\Delta}$  &  $c_n$ {4}  $\rightarrow$  no sign of collectivity

# Collectivity in ep photoproduction from H1



https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-20-033.long.html

No near-side long-range ridge with H1 DIS data Results on  $V_{n\Delta}$  &  $c_n$ {4}  $\rightarrow$  no sign of collectivity

### Lessons from LHC

# Inclusive UPC at the LHC/RHIC

```
Typical kinematics at LHC and RHIC:
Q^2 < (\hbar c/R_A)^2 \rightarrow 0; R_A \sim 1.2 (A)^{1/3} fm
A \sim 200, Q^2 \sim 0.0008 \text{ GeV}^2
E_{\gamma} \sim \gamma^{\text{Lorentz}} (\hbar c/R_A), W_{\nu A} \sim \sqrt{(4 E_{\nu} E_A)}
\gamma^{L} (Pb, LHC)=2.51e3, \gamma^{L} (p, LHC)=6.51e3
E_{\gamma} (LHC) ~ 71 GeV,
W_{\gamma p} (LHC) ~ 1.36 TeV, dN_{trk}/d\eta (HM) > 7
W_{yPb} (LHC) ~ 844 GeV, dN_{trk}/d\eta (HM) > 10
\gamma^{L}(Au, RHIC)= 27,100, \gamma^{L}(p/d, RHIC)=100
E_{\gamma} (RHIC) ~ 2.86 GeV,
W_{\gamma(p/d)} (RHIC) ~ 33.8 GeV
W<sub>YAu</sub> (RHIC) ~ 17.6, 33.8 GeV
```



Main challenge is to exclude hadronic events (peripheral AA or pA)

# A Photonuclear events from ATLAS



#### P. Tribedy, CFNS meeting on RHIC to EIC, May 24-26, 202<sup>-</sup>

# Challenge : purity of yA events



Primarily cut: "0nXn" events using the ZDC. Major discrimination of Pb+Pb using sum-gap

Can achieve > 97% purity for  $\gamma$ +Pb events

γ+Pb: broader sum-gap
distribution
Pb+Pb: narrow sum-gap
distribution

# Ridge yield extracted in γ+Pb events



Use template to extract ridge & anisotropy:

$$Y(\Delta\phi, 2 < |\Delta\eta| < 5) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{pair}}}{d\Delta\phi} = \frac{N_{\text{asco}}}{2\pi} \left( 1 + \sum_n 2a_n \cos(n\Delta\phi) \right)$$
$$Y(\Delta\phi)^{\text{template}}(HM) = F Y(\Delta\phi)(LM) + Y(\Delta\phi)^{\text{ridge}}(HM)$$
$$Y(\Delta\phi)^{\text{ridge}}(HM) = G\{1 + 2a_2\cos(2\Delta\phi) + 2a_3\cos(3\Delta\phi) + 2a_4\cos(4\Delta\phi)\}$$



# Elliptic anisotropy in y+A and CGC

#### ATLAS Collaboration, e-Print: 2101.10771 [nucl-ex]





Cartoon: Blair Seidlitz, IS2021

Elliptic anisotropy is lower in  $\gamma$ +Pb than in p+Pb CGC calculations provide an explanation based on color domain picture.

EIC will provide much control to explore this

# CMS y+p collisions



Quan Wang, CMS Collaboration, IS2021

Pb-going side detector is quiet but a lot of activity in p-going sideAlready gives 95% γp purity

Big step towards UPC-DIS complimentarily although kinematics is different



# CMS y+p collisions



|            | EIC<br>(DIS)  | EIC<br>(PhP)  | LHC<br>(UPC) | RHIC<br>(UPC)                  | HERA<br>(DIS) | HERA<br>(PhP) |
|------------|---------------|---------------|--------------|--------------------------------|---------------|---------------|
| γ+p        | ?<br>(ATHENA) | ?<br>(ATHENA) | CMS)         | ?<br>(STAR,<br>sPHENIX)        | CEUS, H1)     | (H1)          |
| <b>γ+A</b> | ?<br>(ATHENA) | ?<br>(ATHENA) | (ATLAS)      | <b>?</b><br>(STAR,<br>sPHENIX) |               |               |

Since RHIC will make transition to EIC with similar p/A energies, how about search at RHIC (STAR or sPHENIX)?

# **Opportunities with STAR**

# STAR now and in near future



# Inclusive photonuclear processes with STAR



Events like these are eliminated by coincidence triggers, threshold, vetoing and not saved during run

Only datasets on tape: Au+Au 54 GeV (477 µb<sup>-1</sup>) Au+Au 200 GeV (80 µb<sup>-1</sup>)

Feasibility study with models: e+Au with BeAGLE (thanks to Z.Tu, Z.Xu)  $E_e = 10$  GeV,  $E_{Au} = 27$  and 100 GeV,  $E_{\gamma} < 2$  GeV,  $0.001 < Q^2 < 0.01$  GeV<sup>2</sup> e+p with PYTHIA (thanks to M.Mondal, K.Kauder)

 $E_{e}\!=\!10$  GeV,  $E_{p}\!=\!27$  GeV,  $E_{\gamma}\!\!<\!\!2$  GeV,  $0.001\!<\!Q^{2}\!<\!\!0.01$  GeV^{2}

Au+Au with UrQMD with RHIC-ZDC ToyMC (thanks to S.Choudhuri)  $\sqrt{s} = 54$  GeV, 0<b<15 fm, tuned to STAR TPC vs ZDC correlation

### Predictions form eA Monte-Carlo



Primary selection can be done based on ZDCs with one neutron from photon emitting nucleus in the ZDC (reduce beam-gas, FXT events)

Will be associated with  $\eta$ -asymmetry in TPC, gap in BBC & VPDs

# Predictions form AA Monte-Carlo



Hadronic events with asymmetry in neutrons and ZDCs are background (Deformed nuclei, fluctuations of nucleon and clustering of fragment)

Will the characteristics of these events be similar to  $\gamma$ +A?

P. Tribedy, CFNS meeting on RHIC to EIC, May 24-26, 202<sup>-</sup>

### How to separate $\gamma$ +A from A+A?



Spectator & η-asymmetry are anti-correlated in hadronic events while the opposite is expected for γ+A

These extreme configurations occur in U+U collisions and have been triggered and studied by STAR (also see arXiv:1412.5103)



 $dN/d\eta (\eta > 0) > dN/d\eta (\eta < 0)$  $\propto - (ZDC (\eta > 0) > ZDC (\eta < 0))$ 

# $\eta$ asymmetry in TPC unique for $\gamma + A$



The observation of  $\eta$ -asymmetry in TPC will the very first step.

# Using VPDs to identify y-A-rich events



The forward Vertex Position detector can be a used in γ+A events to see if there is a mismatch of vertex from TPC & VPDs

P. Tribedy, CFNS meeting on RHIC to EIC, May 24-26, 202<sup>-</sup>

# Projection with 54 GeV data

d+Au data are from talk by Shengli Huang, STAR Collaboration, IS2021



Au+Au 54 GeV from year 2017 and Au+Au 200 GeV data from year 2019 on tape provides an opportunity for an exploratory study for STAR.

# Anticipated Run 2023 with Au+Au 200 GeV

 $E_{Au} = 100 \text{ GeV}$ 



If a high statistics Au+Au 200 GeV dataset if accumulated by STAR from the anticipated 2023 run of RHIC it will provide a golden opportunity to study photonuclear events with the forward upgrades. The same can be done in the photo production limit of e+A at EIC. Key measurements: 1. ridge 2. chemistry (pi/k/p yield) and how they change when compared to hadronic events at the same multiplicity.

# γ+p in STAR with p/d+Au UPC 200 GeV

 $E_{Au} = 100 \text{ GeV}$ 



Measurements in  $\gamma$ +p can also be done if opportunity comes to collect d/p+Au data.



|            | EIC<br>(DIS)  | EIC<br>(PhP)  | LHC<br>(UPC) | RHIC<br>(UPC)                  | HERA<br>(DIS) | HERA<br>(PhP) |
|------------|---------------|---------------|--------------|--------------------------------|---------------|---------------|
| <b>γ+p</b> | ?<br>(ATHENA) | ?<br>(ATHENA) | CMS)         | <b>?</b><br>(STAR,<br>sPHENIX) | CEUS, H1)     | (H1)          |
| <b>γ+A</b> | ?<br>(ATHENA) | ?<br>(ATHENA) | (ATLAS)      | <b>?</b><br>(STAR,<br>sPHENIX) |               |               |





Names we borrowed from Greek pantheon & their correlations



# Photonuclear processes in UPC from STAR



Opportunities and scope:

- 1. STAR with enhanced pseodorapidity acceptance (iTPC + EPD + FTS/FCS)
- 2. Anticipated Au+Au 200 GeV run of RHIC (2023, 2025)
- 3. Data on tape: Au+Au 54 GeV (2017), Au+Au 200 GeV (2019)
- 4. Opportunistic p+Au or d+Au run at RHIC (2021, 2024)

#### Measurements:

1. Ridge, 2. change of chemistry (pi/k/p yield) & compare to hadronic events

# Photonuclear processes in UPC from STAR



#### CGC calculation arXiv: 2008.03569



Significant difference between correlation in HM (red) & LM (blue) γ+p/Au will be interesting

#### Understanding anisotropy from CGC:

 $x - Q_s$  and domain size in Target  $Q^2 - Size$  of the probe #domains

#### Best opportunity:

Controlled scan of x-Q<sup>2</sup> at EIC

How anisotropy in p+p/Au compare to γ+p/Au @RHIC ?



Cartoon: Blair Seidlitz, IS2021