Di-hadron correlations and implication of gluon saturation

Xiaoxuan Chu, BNL

CFNS workshop May 24-26, 2021

Gluon saturation

- Gluon density rapidly increases at small x: gluon splitting \rightarrow BFKL \rightarrow linear evolution
- Gluon saturation ($Q^2 < Q^2_s$): gluon recombination \rightarrow BK \rightarrow non-linear evolution
- Nuclear gluon distributions at saturation region?

Current knowledge of nPDFs

- LHC data in pPb collisions: low x but high Q²; DIS, DY and PHENIX π^0 data: low/moderate Q²
- Nuclear gluon distributions still have large uncertainty at small x, moderate Q² and low Q²

Gluon density

|| 0.8

0.6

0.4

0.2

0.0

 10^{-10}

 $R^{
m Pb}_g(x,Q^2)$

- Q² evolution behavior of suppression, strong Cold Nuclear Matter (CNM) effect at small Q²
- Amount of suppression varies between fits: data needed to constrain fits

3

 10^{-2}

 10^{-3}

Possible measurements

Inclusive measurement: yields suppressed in forward direction, low p_T

- Forward charged hadron/ π^0 production from RHIC
- Forward open charm production from LHC

Two-particle correlations: suppression in back-to-back correlation

• Back-to-back forward π^0 /hadron correlations

Future directions at STAR and EIC:

- Direct photon with STAR forward upgrade
- Direct photon-jet/charged hadron correlations with STAR forward upgrade
- Charged hadron correlations at further EIC

Inclusive charged particle at BRAHMS

- Yields suppression R_{dAu} < 1 at p_T < 2 GeV; first hint of strong nuclear effect at small x?
- R_{cp} is more pronounced in central dAu collisions
- R_{cp} decreases with increasing rapidity: scan x by varying rapidity

D₀ production at LHCb

- Suppression of D meson production at forward rapidity, not at backward direction (large x)
- Suppression at forward rapidity potentially depends on p_T

Possible measurements

Inclusive measurement: yields suppressed in forward direction, low p_T

- Forward charged hadron/ π^0 production from RHIC
- Forward open charm production from LHC

Two-particle correlations: suppression in back-to-back correlation

• Back-to-back forward π^0 /hadron correlations

Future directions at STAR and EIC:

- Direct photon with STAR forward upgrade
- Direct photon-jet/charged hadron correlations with STAR forward upgrade
- Charged hadron correlations at further EIC

Di-parton kinematics

Kinematics map from Marco van Leeuwen

Scan x (and Q^2) by varying p_T and rapidity

Di-hadron correlations at PHENIX

- Scan x by varying rapidity: more suppression in forward-forward rapidity in central dAu collisions
- Suppression increases in more central dAu collisions
- No broadening and high pedestal in dAu compared to pp collisions

Multi-parton scattering in dAu?

- Pedestal: dAu ≫ pp, Double(multi)-Parton Scattering (DPS)?
- Alternative explanation of suppression in dAu?
 - Uncorrelated π^0 s from different parton scatterings
 - Correlated π^0 s from single hard parton scattering
- pAu data at STAR can provide possibility to study double parton scattering in comparing with pp and dAu collisions

Di-hadron correlations at LHCb

- Pure v₂ ($|\Delta \eta|$ >2) at near-side peak; symmetric long-range component at near-and away-side peak
- Yield suppression in pPb at smallest x region → 10⁻⁵ (over 10 times lower than RHIC); is broadening seen in pPb?
- Theory curve shows narrow peak because of initial- and final-state gluons radiation not included

Di- π^0 correlations at STAR

Area (integral from $\frac{\pi}{2}$ to $\frac{3\pi}{2}$), Width (σ) and Pedestal from Gaussian fit

- Scan x (and Q^2) by varying p_T : suppression at low p_T in pA but not high p_T
- Stable pedestal and width: no broadening

Di- π^0 correlations at STAR

- Same trend for pAu and pAl on event activity: enhanced suppression at high E.A.
- Suppression linearly enhanced as A^{1/3}, unique measurement at STAR

Broadening from predictions

- Value of width in pAu varies between models: GBW >> rcBK in width
- Data can help to constrain width in theoretical models
- Forward upgrade at STAR with high precision can improve measurement of broadening

Future measurements at STAR and EIC

- STAR forward upgrade of Ecal, Hcal and tracking at $2.5 < \eta < 4.0$: expand observables
 - di-charged hadorn, di-jet, γ -hadron/jet, inclusive γ ...
- Similar phase space in highest energy eA collisions at EIC with STAR

Direct photon measurements at STAR

2024 pAu with STAR forward upgrade + 2015 pAu:

- R_{pAu}^{γ} of direct photons: $q+g \rightarrow q+\gamma$, free from the final state effects
- Higher delivered integrated luminosity data improve the constrain on gluon distributions; test theory predictions
- Challenge: remove photons from fragmentation or hadron decay; small cross section at forward rapidity

γ -jet/h or di-jet measurements at STAR

2024 pAu + pAl with STAR forward upgrade, sensitive to the gluon density at small x

 Jets are better mapping to partons, the initial kinematics are better constructed by jets than hadrons:

•
$$\frac{p_{T1e} - y_1 + p_{T2e} - y_2}{\sqrt{s}} < x_A \text{ for di-hadron}$$

•
$$\frac{p_{T1e} - y_1 + p_{T2e} - y_2}{\sqrt{s}} \sim x_A \text{ for di-jets}$$

Di-hadron correlations at EIC

Di-hadron correlations at EIC

- Away side suppression is a combination of Sudakov (no nuclear dependence) and saturation effects?
- Sudakov effect can be estimated from the suppression at non-saturated region
- Away side peak width dominated by initial state parton shower
- Near side peak width mainly affected by final state parton shower and fragmentation p_T

Summary and outlook

- The evidence of a novel universal regime of non-linear gluon dynamics in nuclei is indicated by forward particle production, forward di-hadron correlation
- STAR forward di-hadron correlation: suppression depends on p_T, event activity and A
- Open questions: multi-parton interaction, Sudakov effect, intrinsic k_{T} ...
- Future directions at STAR with forward upgrade and EIC:
 - Forward charged hadron and direct photon production
 - Complementary forward correlations: i.e., γ -jet, di-jet

Back up

Double parton distributions (**DPDs**) contribute to correlated π^0 s : $F_{ik}(x_1, x_2, y)$

- between x₁ and x₂ dependence (longitudinal correlations)
- between x₁, x₂ dependence and y (transverse correlations)

pAu: width = 0.64 >> rcBK at associated $p_T = 1.0-1.5 \text{ GeV}$

Event activity

Energy deposited at EAST BBC (ΣE_{BBC}) quantifies "event activity"

- East: nucleus beam going direction; backward rapidity
- High energy deposition refers to "high activity" collisions

Event activity in pAI and pAu

Beam	Event	$\Sigma E_{ m BBC}$	Class
species	activity	range $(\times 10^3)$	
$p+\mathbf{Al}$	Lowest	3-8	31%- $60%$
	Medium	8-15	60%- $81%$
	Highest	>15	81%-100%
$p{+}\mathbf{Au}$	Lowest	3-12	15%- $43%$
	Medium low	12-24	43%- $69%$
	Medium high	24-36	69%- $88%$
	Highest	>36	88%-100%

STAR Preliminary 10¹⁰ 10⁸ pp collisions 10⁶ 10⁴ 10² 10000 20000 30000 40000 50000 60000 10¹⁰ 10⁸ pAl collisions 10⁶ "high" OW **10**⁴ 10² 1 10000 20000 30000 40000 50000 60000 **10**¹⁰ 10⁸ pAu collisions 10⁶ 10⁴ "high" "low" 10² 1 20000 30000 40000 50000 10000 60000 $\Sigma \mathbf{E}_{\mathbf{BBC}}$

PYTHIA Kinematics: x₁, x₂ and Q²

- x_1 , x_2 and Q^2 increase with p_T , low p_T helps to access saturation regime
- x₁ (x₂) dominates at high (low) x regime; well separated