

Supported in part by

Collision system scan and future perspectives at STAR

Jiangyong Jia

Brookhaven National Laboratory

Office of Science | U.S. Department of Energy

May 24, 2021

200 GeV O+O

e+p/A vs nuclear collisions

• EIC: structures of the initial state

HeavyIon: Initial state and emergence of collectivity.

e+p/A vs nuclear collisions

- EIC: structures of the initial state (one-body Wigner func.)
 - Precise control on kinematics

Heavy-ion: Multi-Parton interactions (many-body Wigner function)

Probe different phase space (fock state) of the proton wave function

Initial state imaging in large system

Initial Shape

Unfold to get initial state information ρ

Initial state imaging in large system

Initial Shape

Unfold to get initial state information

 $ho(r, heta) = rac{
ho_0}{1+e^{(r-R_0(1+eta_2 Y_{20}(heta))/a}}$

Dynamics in the initial stages

Initial condition generally (DIS&HI) described by energy-momentum tensor

Modified in heavy-ion collisions due to final-state interaction.

• Huge theoretical effort/progress in study of hydrodynamization and non-hydro evolution

Aspect of initial conditions from HI

- Small system scan
- Longitudinal correlations
- Covered by others: nPDF, UPC (γ +A, VM), entanglement etc
 - Zhoudunming Tu, Shuai Yang, Dmitri Kharzeev…
- Precision on initial state by improving hydrodynamic models

Importance of subnucleon fluctuations

v₂(2, I∆η|>2)

0.1

pPb (s_{NN} = 5.02 TeV

Eccentric proton

Round proton

CMS v₂ data, 185 ≤ N^{ottine} < 220

Schenke

p_ (GeV/c)

IP-glasma, b=0, n/s=0.18 (Very preliminary)

 Proton substructure essential to explain the pPb ridge

 Proton substructure required to describe incoherent e+p data

See 2001.10705, 2102.11189

How to go beyond this qualitative picture with STAR data?

Shape engineering in small system

- $v_2(^{3}\text{HeAu}) \sim v_2(dAu) > v_2(pAu), v_3(^{3}\text{HeAu}) \sim v_3(dAu) \sim v_3(pAu)$
- Both nucleon fluctuation (v_2) and subnucleon fluctuations (v_3) are important.
 - Ongoing debate on the STAR/PHENIX differences

Synergy between RHIC & LHC

• Remarkable \sqrt{s} indep. of $v_n(p_T)$ in largest and smallest systems!

- What does this mean?
- \sqrt{s} dependence of nucleon and subnucleon fluctuations?
 - Fill this gap with O+O data at RHIC (taken) and LHC (to be taken).

11

Disentangle different contributions

- Geometry vs momentum anisotropy \rightarrow initial T_{uv}
 - Systematic analysis of multiple observables in multiple systems (v_n, [p_T], vn-[p_T])

Exp. data + theory efforts Understand non-flow

Disentangle different contributions

- Geometry vs momentum anisotropy \rightarrow initial T_{uv}
 - Systematic analysis of multiple observables in multiple systems (v_n, [p_T], vn-[p_T])

Longitudinal structure and dynamics

3D partonic structure in A+A Accessible via rapidity correlations

what about p+p, and proton structure in 3D?

averaged over events

event-by-event

Longitudinal structure and dynamics

Multiple particle correlations and explore new observables

15

Extended STAR acceptance

- Recent upgrade + forward upgrade to be fully installed this year
- Collect pA/AA data to take advantage of the extended acceptance
 - Provide important information on nPDF& CGC in 2022 and 2024
 - Complimentary to sPHENIX by bring insight on the soft sector in particular in 2023-2025

Forward upgrade status

- FCS (EMCAL and HCAL) construction complete, commission with RUN2021
- Forward Silicon Tracker and sTGC Tracker expected to complete in June 2021, and will be installed before RUN2022

'Forward' Jet-tracking Components Installed at RHIC's STAR Detector

New calorimeters will give scientists a glimpse of the internal structure of protons and nuclei in particle smash-ups at the Relativistic Heavy Ion Collider

Commission data from O+O run

February 22, 2021

Nuclear PDF

Xiaoxuan Chu

18

- Unique capability in moderate Q² and moderate to low x
 - Less affected by Q² evolution compared to LHC
- Golden channels: R_{pA} for direct photon and DY,2.5< η <4
 - Constrains on sea quark and gluon pdfs.
- Forward di-hadron correlation & γ -jet in search for gluon saturation

Collectivity in y+A

Prithwish Tribedy

- Nature of collectivity in γA (LHC/HERA) not very clear.
- STAR will bring additional insight in the high Lumi running in 2023-2025
 - +Complementary info from other UPC process.

Example: constrain nuclei shape with A+A

Hydro is a precision tool for IS &FS

Initial Shape

Demonstrated by Multi-system Bayesian analysis

1605.03954 2010.15130 2011.01430

Predicated on knowing the initial state via Trento model

Harmonic flow

Initial density profile

$$\left({ ilde{T}}_A+{ ilde{T}}_B
ight)/2 \quad {
m vs} \quad \sqrt{{ ilde{T}}_A{ ilde{T}}_B}$$

• pre-equalibrium dynamics

Shape of nuclei

Most ground state stable nuclei are deformed

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1 + e^{(r-R(\theta,\phi)/a)}}$$

R(\theta,\phi) = R_0 (1 + \beta_2[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}] + \beta_3 Y_{3,0} + \beta_4 Y_{4,0})

Shape determined by minimizing the energy

Triaxial spheroid: $a \neq b \neq c$.

Triaxility controlled by $0 \le \gamma \le \pi/3$ Prolate: a=b<c $\rightarrow\beta_2$, $\gamma=0$ Oblate: a<b=c $\rightarrow\beta_2$, $\gamma=\pi/3$

Main tool: transition rates B(En) among low lying states

Nuclear shape tomography via flow

• Shape from B(E2), radial profile from e+A or ion-A scattering

«rotational» spectrum

Probe entire mass distribution: multi-point correlations

collective flow response to the shape

$$\begin{split} S(\mathbf{s}_1, \mathbf{s}_2) &\equiv \langle \delta \rho(\mathbf{s}_1) \delta \rho(\mathbf{s}_2) \rangle \\ &= \langle \rho(\mathbf{s}_1) \rho(\mathbf{s}_2) \rangle - \langle \rho(\mathbf{s}_1) \rangle \langle \rho(\mathbf{s}_2) \rangle. \end{split}$$

Does HI probe the same information?

- Low energy exps. measure deformed charge distribution
 - HI measure the mass distribution
- B(En) exp. measure deformation at time scale of transtion~10⁻²¹s, vs HI collision 10⁻²⁴s.
 - The nuclear wave function probed might be different.
- B(En) exp. directly reflects the collective rotation. HI collision cares about the actual shape of mass distribution
 - Shed light on the rigidity on nuclear deformation?

Bohr and Mottelson¹ which assumes that the deformed nuclear system merely changes its shape to give the appearance of rotation, known as irrotational flow motion. The moment of inertia

Rigid

Irrotational

Scan systems with different deformation to constrain shape and use that as extra control parameter on hydrodynamics Can/will we be able to do something similar for p+p collisions?

Concluding remarks

- HI relied on NS and DIS to provide inputs on initial state of A and p.
 - very different theoretical tools and experimental methods

- HI physics now is precise enough to feedback to NS and DIS
 - Clearly possible in large A+A system. As our tool & understanding of early state improves, might be possible even for p+p? Continued analysis & interpretation of HI data is important

HI-like event ~600 particles

Initial state mapping in large system

• Similarly we can unfold initial state size & shape-size fluctuations

Deformed system: enhanced size fluctuation, anti-correlation for v₂-[p_T]

Collectivity in different systems

~30000 particles* ~2000 particles* ~

~ 600 particles*

Change system size and shape at RHIC and LHC: → Control space-time dynamics!

* Rough number in very high-multiplicity events, integrated over full phase space at LHC

High-multiplicity e+A at EIC?

High-multiplicity $e+A = (q\bar{q})+A$?

Control the size and energy of the probe via x and Q²

60