Linearly Polarized Photon-Gluon Collisions

Daniel Brandenburg (BNL/CFNS)

CFNS Workshop:

RHIC Science Programs Informative Toward EIC in the Coming Years

Tuesday, 25 ${ }^{\text {th }}$ of May, 2021

Talk Outline

1. Introduction

Strong electromagnetic fields and transverse linearly polarized photons
2. Angular modulations of diffractive $\rho^{0} \rightarrow \pi^{+} \pi^{-}$in UPCs
3. Comparison between $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{U}+\mathrm{U}$
4. Comparison to theoretical models
5. Prospects and Applications
6. Summary

Ultra-Peripheral Heavy-Ion Collisions

Ultra-relativistic charged nuclei produce highly Lorentz contracted electromagnetic fields

- $\gamma \gamma \rightarrow l^{+} l^{-}$: photon-photon fusion
- One photon from the field of each nucleus interacts
- Second order process in α
- $Z \alpha \approx 1 \rightarrow$ High photon density with highly charged nuclei
S. J. Brodsky, T. Kinoshita, and H. Terazawa, Phys. Rev. D 4, 1532 (1971). M. Vidović, M. Greiner, C. Best, and G. Soff, Phys. Rev. C 47, 2308 (1993).
- $\gamma \mathbb{P} \rightarrow \rho^{0}, J \psi$, etc. : Photo-nuclear production of vector mesons ($J^{P}=1^{-}$)
- Photon from the EM field of one nucleus fluctuates to a $q \bar{q}$ pair, interacts with pomeron (or Reggeon @ RHIC)
- Photon quantum numbers $J^{P C}=1^{--}$

Klein, S. R. \& Nystrand, J. Phys. Rev. C 60, 014903 (1999).
Klein, S. R. \& Nystrand, J. Phys. Rev. Lett. 84, 2330-2333 (2000).

Transverse linearly polarized photons

- Extreme Lorentz contraction of EM fields ($\vec{E} \perp \vec{B} \perp \vec{k}$)
\rightarrow Quasi-real photons should be linearly polarized in the transverse plane
- Polarization vector : aligned radially with the "emitting" source
- Well defined in the photon position eigenstates
- Event average, washes out polarization effects, since \vec{b} is random from one event to next
$\bigotimes z$ $-\vec{E}--\vec{B}$

Experimental Signature of Linearly Polarized Photons

- The different helicity amplitude combinations for linear polarization leads to a splitting of the angular distribution
- Parallel photon polarizations $\vec{\xi}_{1} \| \vec{\xi}_{2} \rightarrow$ Negative $\cos 4 \Delta \phi$ modulation
- Perpendicular photon polarizations $\vec{\xi}_{1} \perp \vec{\xi}_{2} \rightarrow$ Positive $\cos 4 \Delta \phi$ modulation
$-\vec{E}--\vec{B} \otimes z$

b
[1] C. Li, J. Chou, Y.-j. Chou, Phys. Lett. B 795, 576 (2019)

Birefringence of the OED Vacuum

[1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019) QED calculation: Li, C., Zhou, J. \& Zhou, Y. Phys. Rev. D 101, 034015 (2020). polarized $\gamma \gamma \rightarrow e^{+} e^{-}$[1] leads to $\cos (4 \Delta \phi)$ modulations in

$$
\begin{aligned}
\Delta \phi= & \Delta \phi\left[\left(e^{+}+e^{-}\right),\left(e^{+}-e^{-}\right)\right] \\
& \approx \Delta \phi\left[\left(e^{+}+e^{-}\right), e^{+}\right]
\end{aligned}
$$

Ultra-Peripheral

Quantity	Measured	QED	χ^{2} / ndf
$-A_{4 \Delta \phi}(\%)$	16.8 ± 2.5	16.5	$18.8 / 16$

> Peripheral (60-80\%)

Quantity	Measured	QED	χ^{2} / ndf
$-A_{4 \Delta \phi}(\%)$	27 ± 6	34.5	$10.2 / 17$

 $\cos 4 \Delta \phi$ observed at $>6 \sigma$ significance (UPC) - photons are linearly polarized + First laboratory evidence for vacuum birefringence

Polarized Photon + gluon Collisions

Photo-Nuclear Interactions

- Photo nuclear interactions have been studied for decades[1, 2, 3]
- Well known process for probing the hadronic structure of the photon
- Extensive measurements in ep conducted at HERA (H1 and Zeus)
- Involves virtual (longitudinally polarized) photons with large Q^{2}
- Detailed measurements of the spindensity elements

Figure 1: Diffractive vector meson electroproduction.

electron scattering plane

Photo-Nuclear processes in UPC

STAR has studied $\gamma \mathbb{P} \rightarrow \rho^{0} \rightarrow \pi^{+} \pi^{-}$(and direct $\pi^{+} \pi^{-}$production) in the past

Diffractive structure in $p_{T}^{2} \approx-t$ distribution

Cross section vs. $p_{T}^{2} \approx-t$ sensitive
to the gluon density within nucleus

Photo-Nuclear processes in UPC

STAR has studied $\gamma \mathbb{P} \rightarrow \rho^{0} \rightarrow \pi^{+} \pi^{-}$(and direct $\pi^{+} \pi^{-}$production) in the past

Other measurements in UPC at RHIC \& LHC include:

Photoproduction of $\mathrm{J} / \mathrm{psi}$ in $\mathrm{Au}+\mathrm{Au}$
UPC at $\sqrt{S_{N N}}=200 \mathrm{GeV}$
PHENIX Phys.Lett.B679:321-329,2009
ρ^{0} vector mesons in $\mathrm{Pb}-\mathrm{Pb}$ UPC at
$\sqrt{S_{N N}}=5.02 \mathrm{TeV}$
ALICE, JHEPO6 (2020) 35
J / ψ in $\mathrm{Pb}+\mathrm{Pb}$ UPC at $\sqrt{S_{N N}}=2.76$ TeV
CMS, Phys. Lett. B 772 (2017) 489
... and many more

Photo-Nuclear processes in UPC

STAR has studied $\gamma \mathbb{P} \rightarrow \rho^{0} \rightarrow \pi^{+} \pi^{-}$(and direct $\pi^{+} \pi^{-}$production) in the past

Other measurements in UPC at RHIC \& LHC include:

Photoproduction of $\mathrm{J} / \mathrm{psi}$ in $\mathrm{Au}+\mathrm{Au}$
UPC at $\sqrt{S_{N N}}=200 \mathrm{GeV}$
PHENIX Phys.Lett.B679:321-329,2009
ρ^{0} vector mesons in $\mathrm{Pb}-\mathrm{Pb}$ UPC at
$\sqrt{S_{N N}}=5.02 \mathrm{TeV}$
ALICE, JHEPO6 (2020) 35
J / ψ in $\mathrm{Pb}+\mathrm{Pb}$ UPC at $\sqrt{S_{N N}}=2.76$
TeV
CMS, Phys. Lett. B 772 (2017) 489 ... and many more

What more can we learn, with transverse linearly polarized photons?

Photo-production with Polarized Photons

- Nuclei "take-turns" emitting photon vs. Pomeron
- Polarization vector : aligned radially with the "emitting" source
- Well defined in terms of the semi-classical \vec{E} and \vec{B} fields
- Final state $\pi^{+} \pi^{-}$pair are produced through interference of both amplitudes

Quantum Interference Effects with Polarized Photons

If the photons are linearly polarized in the transverse plane:
\rightarrow Expect a $\cos 2 \Delta \phi$ modulation in the final state[1]
\rightarrow Modulation due to quantum interference of amplitudes

Theoretical calculations indicate that the quantum interference effect is sensitive to:
\rightarrow Nuclear Geometry (gluon distribution)
\rightarrow Impact Parameter (detailed spatial distribution)

Access through measurement of $\Delta \phi$ distribution, like the $\gamma \gamma \rightarrow e^{+} e^{-}$case
[1] Xing, H et.al. J. High Energ. Phys. 2020, 64 (2020).

Photon Polarization \rightarrow Destructive Interference

- Observation of DESTRUCTIVE interference in vector meson production

FIG. 2. Raw (uncorrected) $\rho^{0} t_{\perp}$ spectrum in the range $0.0<$ $|y|<0.5$ for the MB data. The points are data, with statistical errors. The dashed (filled) histogram is a simulation with an interference term ("Int"), while the solid histogram is a simulation without interference ("NoInt"). The handful of events histogrammed at the bottom of the plot are the wrong-sign ($\pi^{+} \pi^{+}+\pi^{-} \pi^{-}$) events, used to estimate the combinatorial background.
Klein, S. R. \& Nystrand, J. Phys. Rev. C 60, 014903 (1999).
Klein, S. R. \& Nystrand, J. Phys. Rev. Lett. 84, 2330-2333 (2000).

Photon Polarization \rightarrow Destructive Interference
 - Observation of DESTRUCTIVE interference in vector meson production

FIG. 2. Raw (uncorrected) $\rho^{0} t_{\perp}$ spectrum in the range $0.0<$ $|y|<0.5$ for the MB data. The points are data, with statistical errors. The dashed (filled) histogram is a simulation with an interference term ("Int"), while the solid histogram is a simulation without interference ("NoInt"). The handful of events histogrammed at the bottom of the plot are the wrong-sign ($\pi^{+} \pi^{+}+\pi^{-} \pi^{-}$) events, used to estimate the combinatorial background.
Klein, S. R. \& Nystrand, J. Phys. Rev. C 60, 014903 (1999).
Klein, S. R. \& Nystrand, J. Phys. Rev. Lett. 84, 2330-2333 (2000).

- Explanation of destructive interference attributed to odd parity under $A_{1} \Leftrightarrow A_{2}$ exchange
- However, strictly speaking real photons do not have well defined parity
\rightarrow Photon intrinsic parity is defined by the radiation field
Yang, C. N. Phys. Rev. 77, 242-245 (1950).

- Production at zero P_{T} must have anti-parallel photon polarization
- Provides an intuitive understanding of destructive interference

Measurements in Au+Au and U+U UPC events

- Clear ρ^{0} peak in both $A u+A u$ and U+U UPC events.
- First measurement of diffractive coherent photonuclear production in U+U collisions.
- For the $\Delta \phi$ measurement, we select region around ρ^{0} mass with roughly uniform acceptance

Measurements in Au+Au and U+U UPC events

Not only ρ^{0}, interference from other states:

- Drell-Söding (Direct $\pi^{+} \pi^{-}$)
- ω interference

For the analysis in this talk we do not attempt to separate them

Additional statistical power may allow future massdifferential studies

$\Delta \phi$ in Au+Au and U+U Collisions

Ultra-peripheral events from:

- AutAu at $\sqrt{S_{N N}}=200$
- U+U at $\sqrt{S_{N N}}=193$
- At low p_{T} where the modulation is strongest ($p_{T}<60 \mathrm{MeV} / \mathrm{c}$)

Quantify the difference in strength for $A u+A u$ vs. U+U via a fit:

$$
f(\Delta \phi)=1+a \cos 2 \Delta \phi
$$

Au+Au:

$a=0.292 \pm 0.004$ (stat) ± 0.004 (syst.)
$\mathrm{U}+\mathrm{U}$:
$a=0.237 \pm 0.006$ (stat) ± 0.004 (syst.)
Difference of 4. 3σ (stat. \& syst.):

- Interference effect is sensitive to the nuclear geometry / gluon distribution

$\Delta \phi$ in Au+Au and U+U Collisions

Ultra-peripheral events from:

- AutAu at $\sqrt{S_{N N}}=200$
- U+U at $\sqrt{S_{N N}}=193$
- At low p_{T} where the modulation is strongest ($p_{T}<60 \mathrm{MeV} / \mathrm{c}$)

Quantify the difference in strength for $A u+A u$ vs. U+U via a fit:

$$
f(\Delta \phi)=1+a \cos 2 \Delta \phi
$$

Au+Au:

$a=0.292 \pm 0.004$ (stat) ± 0.004 (syst.)
$\mathrm{U}+\mathrm{U}$:
$a=0.237 \pm 0.006$ (stat) ± 0.004 (syst.)

Difference of 4. 3σ (stat. \& syst.):

- Interference effect is sensitive to the nuclear geometry / gluon distribution

Investigate the interference effect in more detail through p_{T} structure

$\cos 2 \Delta \phi$ vs. p_{T} in $U+U$ at $\sqrt{S_{N N}}=193 \mathrm{GeV}$

- Strong $\cos 2 \Delta \phi$ modulation observed at $\mathrm{p}_{T}<\sim 60 \mathrm{MeV} / c$
- Broad second "peak" above 80 $\mathrm{MeV} / \mathrm{c}$
- Includes both coherent and incoherent sources
- Fully corrected for STAR acceptance
- Systematic uncertainty shown in colored band

$\cos 2 \Delta \phi$ vs. p_{T} in $\mathrm{U}+\mathrm{U}$ and $\mathrm{Au}+\mathrm{Au}$

- Strong $\cos 2 \Delta \phi$ modulation observed at $\mathrm{p}_{T}<\sim 60 \mathrm{MeV} / c$
- In U+U: Broad second "peak" above $80 \mathrm{MeV} / \mathrm{c}$
- In AutAu: more definite second peak around $80<p_{T}<160 \mathrm{MeV} / \mathrm{c}$
- Includes both coherent and incoherent sources
- Fully corrected for STAR acceptance
- Systematic uncertainty shown in colored band

Quantitative Comparison : Au+Au and $U+U$

- Fit U+U curve with scaled Au+Au curve ($\delta p_{\perp} \rightarrow p_{\perp}$)
- Robust best fit for $\delta=$ 1.194 ± 0.021 (stat. and syst. uncert) $\rightarrow 9 \sigma$ significant difference
- Consistent with ratio of long axes (U/Au) of 1.22 ± 0.02

[1] Q. Y. Shou, Y. G. Ma, et al., Physics Letters B 749, 215 (2015).

Effect of Incoherent Production?

- Both $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{U}+\mathrm{U}$ show no modulation at high p_{T} where incoherent production dominates
- Experimentally we observe that the incoherent production does not contribute to $\Delta \phi$ modulation
- Provides new information for improved separation of coherent / incoherent from the theoretical side

Understanding the Effect : Theory

- Currently there are two theory calculations[1,2]
- Both describe effect as a two-source interference pattern resulting from quantum spin-momentum correlations

- Look at both theory calculations in detail
- Compare predictions to the STAR measurements
[1] Xing, H et.al. J. High Energ. Phys. 2020, 64 (2020).
[2] Zha, W., JDB, Ruan, L. \& Tang, Z. Phys. Rev. D 103, 033007 (2021).

Theoretical Predictions for $\gamma \mathbb{P} \rightarrow \rho^{0} \rightarrow \pi^{+} \pi^{-}$

Calculation from [1] Xing, H et.al. J. High Energ. Phys. 2020, 64 (2020). (Theory A)

Structure in $\cos 2 \Delta \phi$ signal is sensitive to:
\rightarrow Nuclear Geometry / gluon distribution
(Skin depth = Woods-Saxon diffusivity a)
\rightarrow Impact parameter
UPC (blue) vs. 70-90\% central (red)

Comparison to STAR Measurements

- Simultaneous fit STAR Coherent spectra (incoherent subtracted using dipole FF)
- Good description of total coherent cross section $R_{A}=6.9 \mathrm{fm}$ and $a=0.64 \mathrm{fm}$
- Gluon distribution given the Golec-Biernat and Wüsthoff (GBW) model

- Good qualitative description of data including structure
- Overpredicts strength of main peak
- Higher p_{T} region shows strong sensitivity to gluon distribution
[1] Xing, H et.al. J. High Energ. Phys. 2020, 64 (2020).

Exploring the double-slit interference with linearly polarized photons

Calculation from Zha, W., Brandenburg, J. D., Ruan, L. \& Tang, Z. Phys. Rev. D 103, 033007 (2021). (Theory B)

- For $\rho^{0} \rightarrow \pi^{+} \pi^{-}$(spin 0 daughters)

$$
\frac{d^{2} N}{d \cos \theta d \phi}=\frac{3}{8 \pi} \sin ^{2} \theta[1+\cos 2(\phi-\Phi)],
$$

$$
2\langle\cos (2 \phi)\rangle=\cos (2 \Phi)
$$

- For $\rho^{0} \rightarrow e^{+} e^{-}(\operatorname{spin} 1 / 2$ daughters $)$

$$
\begin{array}{r}
\frac{d^{2} N}{d \cos \theta d \phi}=\frac{3}{16 \pi}\left(1+\cos ^{2} \theta\right)\left[1-\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \cos 2(\phi-\Phi)\right] \\
2\langle\cos (2 \phi)\rangle=-\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \cos (2 \Phi)
\end{array}
$$

Where the angle Φ denotes the angle between the photon polarization plane and vector meson production plane.

$\rho^{0} \rightarrow e^{+} e^{-}$: Relevant for $J / \psi \rightarrow e^{+} e^{-}$case
STAR J / ψ measurement in 2023-2025 : $\pm 4 \%$ @ $50 \mathrm{MeV} / \mathrm{c}$

Theory \& Au+Au Data Comparison

- Qualitative description of the data
- Large first peak
- Approximate location of second peak
- Magnitude of $1^{\text {st }}$ peak shows very good agreement
- First peak in the calculation is shifted to slightly lower P_{T} compared to data
- Second peak ($P_{T}>80 \mathrm{MeV} / \mathrm{c}$) shows strong dependence on details of nuclear geometry (gluon density)
- Looking forward to predictions for U+U data

Interjection: Relation to past measurements

- Detailed measurements of the spin-density matrix elements have been carried out in the past, e.g. at HERA[1] and by STAR[2]

A few points to consider:

electron scattering plane
production plane

Figure 3: Definition of the angles characterising diffractive VM production and decay in the helicity system.
[1] H1 Collaboration. J. High Energ. Phys. 2010, 32 (2010).
[2] STAR, Phys. Rev. C77, 034910 (2008).

1. The $\Delta \phi$ angle is related to the φ angle in the spin-density formalism
2. At HERA the outgoing electron was tagged

- The photon momentum vector is known
- Provides event-by-event alignment of angular distributions

3. In $e p$ the photon is high Q^{2} and predominately longitudinally polarized $\left\langle\xi_{\text {long }}\right\rangle \approx 0.98$

Interjection: Relation to past measurements

- Detailed measurements of the spin-density matrix elements have been carried out in the past, e.g. at HERA[1] and by STAR[2]

A few points to consider:

1. The $\Delta \phi$ angle is related to the φ angle in the spin-density formalism

2. At HERA the outgoing electron was tagged

- The photon momentum vector is known
- Provides event-by-event alignment of angular distributions

3. In $e p$ the photon is high Q^{2} and predominately longitudinally polarized $\left\langle\xi_{\text {long }}\right\rangle \approx 0.98$
[1] H1 Collaboration. J. High Energ. Phys. 2010, 32 (2010).
[2] STAR, Phys. Rev. C77, 034910 (2008).

Interjection: Relation to past measurements

- Detailed measurements of the spin-density matrix elements have been carried out in the past, e.g. at HERA[1] and by STAR[2]

A few points to consider:

1. The $\Delta \phi$ angle is related to the φ angle in the spin-density formalism
2. At HERA the outgoing electron was tagged

- The photon momentum vector is known
- Provides event-by-event alignment of angular distributions

3. In $e p$ the photon is high Q^{2} and predominately longitudinally polarized $\left\langle\xi_{\text {long }}\right\rangle \approx 0.98$
4. There is only one contributing amplitude - no interference effect
[1] H1 Collaboration. J. High Energ. Phys. 2010, 32 (2010).
[2] STAR, Phys. Rev. C77, 034910 (2008).

Prospects \& Applications

Future Tests of Interference Effects

1. Differential Measurement $\Delta \phi$ distribution vs. $M^{\pi \pi}$ and rapidity

STAR Collaboration et al. Phys. Rev. Lett. 102, 112301 (2009).

Future Tests of Interference Effects

2. Measurement $\Delta \phi$ distribution from $J / \psi \rightarrow e^{+} e^{-}$

- Large mass of J / ψ provides hard scale for calculations
- Provides test of daughter spin coefficients - further test concept
- J / ψ is a single state, unlike the $\pi^{+} \pi^{-}$where there are multiple interfering states
$\rho^{0} \rightarrow e^{+} e^{-}$: Relevant for $J / \psi \rightarrow e^{+} e^{-}$case
STAR J / ψ measurement in 2023-2025 : $\pm 4 \%$ @ $50 \mathrm{MeV} / \mathrm{c}$

Future Tests of Interference Effects

3. Measurement $\Delta \phi$ distribution in non-UPC events

Measurement of $\gamma \gamma \rightarrow l^{+} l^{-}$already shows interference effects in hadronic collisions

Future Tests of Interference Effects

3. Measurement $\Delta \phi$ distribution in non-UPC events

- Unlike leptons, π interact via strong force
- Presence of strongly interacting medium \rightarrow wavefunction collapse?
- I.e. no interference
- In this case comparison of $\rho^{0} \rightarrow$ $\pi^{+} \pi^{-}$vs. $J / \psi \rightarrow l^{+} l^{-}$would be very interesting

Future Tests of Interference Effects

3. Measurement $\Delta \phi$ distribution in non-UPC events

Answer Question: What is coherently interaction?

- STAR Measurements of $J / \psi \rightarrow l^{+} l^{-}$in peripheral collisions already indicate interference
- Coherent measurements in peripheral collisions can help distinguish coherent emitter
- $\Delta \phi$ Interference pattern should provide much more information

Use interference to separate Coherent/Incoherent

- Experimentally, we observe that incoherent does not contribute to interference pattern (Zero above pT > $160 \mathrm{MeV} / \mathrm{c}$)
- Once quantitative agreement is reached between data \& theory for $\Delta \phi$
\rightarrow Use interference effect to help disentangle coherent vs. incoherent
- Simultaneous fit measured spectra (coherent + incoherent) with $\cos 2 \Delta \phi$

- Proof of concept already carried out in [1], however STAR t spectra had incoherent pre-subtracted using a dipole form factor.

Separation of coherent vs. incoherent is the essential experimental challenge for EIC measurements

[1] Xing, H et.al. J. High Energ. Phys. 2020, 64 (2020).

Other Polarization Effects

- $\Delta \phi$ is sensitive to Coulomb-nuclear interference

FIG. 1: An illustration of the mechanism giving rise to $\cos 3 \phi$ azimuthal asymmetry. The solid line represents the quark propagator, while the pion propagator is indicated by the dashed line.

Coulomb-nuclear interference should produce odd harmonics ($\cos \phi \& \cos 3 \phi)$

NOTE: Existing STAR measurement applies charge shuffling to simplify corrections \rightarrow odd harmonics are zero by construction

Summary

1. Observed $(6.7 \sigma) \cos 4 \Delta \phi$ angular modulation in linear polarized $\gamma \gamma \rightarrow e^{+} e^{-}$(Breit-Wheeler) process

- Colliding photons are linearly polarized
- First laboratory evidence for vacuum birefringence

2. First measurements of $\Delta \phi$ modulations in $\gamma \mathbb{P} \rightarrow \rho^{0} \rightarrow \pi^{+} \pi^{-}$process

- Strong $\cos 2 \Delta \phi$ modulations due to photon polarization
- Measurement in Au+Au and U+U collisions
- Experimentally demonstrate sensitivity to gluon distribution within nucleus
- Results are qualitatively consistent with theoretical predictions

Many open questions from both experimental and theoretical sides

Polarization Sensitive Observable

$$
\begin{gathered}
\Delta \phi=\Delta \phi\left[\left(e^{+}+e^{-}\right),\left(e^{+}-e^{-}\right)\right] \\
\approx \Delta \phi\left[\left(e^{+}+e^{-}\right), e^{+}\right]\left(\text {for small pair } p_{T}\right)
\end{gathered}
$$

[^0]
Polarization Sensitive Observable

$$
\begin{gathered}
\Delta \phi=\Delta \phi\left[\left(e^{+}+e^{-}\right),\left(e^{+}-e^{-}\right)\right] \\
\left.\approx \Delta \phi\left[\left(e^{+}+e^{-}\right), e^{+}\right] \text {(for small pair } p_{T}\right)
\end{gathered}
$$

Sensitive to polarization through quantum space-momentum (spin-momentum) correlations

Recently realized, collision of linearly polarized photons leads to a $\cos (4 \Delta \phi)$ modulation in polarized $\gamma \gamma \rightarrow e^{+} e^{-}$process [1]

The corresponding vacuum LbyL scattering[2] is expected to display a $\cos (2 \Delta \phi)$ modulation at midrapidity

These effects are related to vacuum birefringence[3]

[1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019)
[2] Harland-Lang, L. A., Khoze, V. A. \& Ryskin, M. G. Eur. Phys. J. C 79, 39 (2019).
[3] John S. Toll "The Dispersion relation for light and its application to problems involving electron pairs", Princeton (1952)

Can we "turn off" the interference effect?

In p+Au there is a significant difference in charge (Z) between the colliding beams:

- Photon emission from the field of the proton is Z^{2} down compared to a photon emitted from the field of the Au
- Production from predominately one amplitude - $\gamma^{A u}+\mathbb{P}^{p} \rightarrow \rho^{0} \rightarrow \pi^{+} \pi^{-}$

[1] Xing, H et.al. J. High Energ. Phys. 2020, 64 (2020).

[^0]: [1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019)
 [2] Harland-Lang, L. A., Khoze, V. A. \& Ryskin, M. G. Eur. Phys. J. C 79, 39 (2019).

