# Small System Observables

Rosi Reed, Lehigh University



## **The Distant Past**

- Prior to ~2010 it was generally assumed that:
  - AA collisions Flow = QGP
  - p/dA collisions No flow (or QGP), baseline measurement to understand CNM
  - pp collisions No flow (or QGP), baseline measurement to understand AA
- Two key observations radically changed our picture of HI collisions:



# Thoughts

- There are no baselines, only physics (QCD)
  - We should learn from our mistakes!
- We should be careful correlation doesn't necessarily mean collectivity
  - Phase space considerations, etc
  - Especially key in small systems!
- I should have a third axis probe
  - Collectivity in the HF sector in small systems is quite interesting
- Where does collectivity exist?
- What do our observations and calculations imply about the underlying physics mechanisms?



#### Near side ridge and collectivity across systems





Seidlitz, HP 2020, ATLAS-CONF-2019-022

### **Opportunities with STAR**



Opportunities in UPC with STAR@RHIC:

- 1. Enhanced pseodorapidity acceptance (iTPC, EPD, FTS/FCS)
- 2. Anticipated Au+Au 200 GeV run of RHIC (2023, 2025)
- 3. Data on tape: Au+Au 54 GeV (2017), Au+Au 200 GeV (2019)
- 4. Opportunistic p+Au or d+Au run at RHIC (2021, 2024)

#### Measurements:

1. Ridge, 2. change of chemistry (pi/k/p yield) & compare to hadronic events



### Hadronization is modified in collisions with a nucleus

PHENIX, Phys. Rev. C 88, 024906 (2013)

HERMES, Phys. Lett. B 780, 1 (2007)



Different hadronization mechanism? Modified fragmentation functions? Etc...



Is the number of color strings the key ingredient for collectivity?

# Centrality in pA

- Centrality definitions and measurements in small systems can be complicated
  - Jets can bias measurements if the η gap between centrality measure and jet measurement are not sufficient



Revisit centrality determination in pA. Jet  $R_{pA}$  at large  $x_F$  (or  $x_1$ ). Energy loss in cold nuclear matter – Connection here is to DY in pA E906 more so than EIC.

## Quarkonia as a probe

- Upsilons provide a nice standard candle to probe systems in a scale dependent way with the complication that multiscale jets have
- Separate underlying physics mechanisms via Upsilon and  $J/\psi$



Excited to ground quarkonium states. In AA, but also more importantly pA. Will inform quarkonium physics in eA and also the study of exotics.

# Shape of nuclei

Most ground state stable nuclei are deformed

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1 + e^{(r-R(\theta,\phi)/a)}}$$
  
R(\theta,\phi) = R\_0 (1 + \beta\_2[\cos \gamma Y\_{2,0} + \sin \gamma Y\_{2,2}] + \beta\_3 Y\_{3,0} + \beta\_4 Y\_{4,0})

#### Shape determined by minimizing the energy



Triaxial spheroid:  $a \neq b \neq c$ .



Triaxility controlled by  $0 \le \gamma \le \pi/3$ Prolate: a=b<c $\rightarrow\beta_2$ , y=0 Oblate: a<b=c $\rightarrow\beta_2$ , y= $\pi/3$ 

#### Main tool: transition rates B(En) among low lying states

# 200 GeV O+O







OO Running at STAR will allow a more differential look at the **size** AND **geometry** dependence!

## **System Evolution**

- System size / collision energy changes influence from initial state/preequilibrium/QGP phase
  - Disentangle final state from initial state physics



### Longitudinal structure and dynamics



15

Differences in STAR/PHENIX geometry with the effect of longitudinal structure (and fluctuations!) could explain this discrepancy

 Exploit differences to understand the physics!



### Photon yields



We see a transition away from a pure pQCD prediction of the prompt photon yield at  $\sim dN_{ch}/dh \sim 10!$ 

- High energy pp?
- Excess photon yield vs signals of collectivity?

### **Conclusions/Future**

- Collectivity exists from pp  $\rightarrow$  AA
  - What process(es) create this collectivity?
    - Final state?
    - Geometry?
    - Initial state?
- Jet/HF probes allow a scan of the size structure within the small systems
- Geometry/Fluctuations play a large role and should be used to differentiate different processes

