Heavy Flavor Measurements from RHIC to EIC

Xin Dong (Lawrence Berkeley National Laboratory)

Outline

- Introduction
- Heavy flavors at RHIC to date (-2021)
 - Quantifying QGP properties Phase-I
- Heavy flavors at RHIC in near future (2022 202x)
 - Quantifying QGP properties Phase-II
 - Glimpsing at gluon distributions in nucleon/nucleus
- Heavy flavors at EIC (203x)
 - Scrutinizing gluon dynamics in nucleon/nucleus
- Summary

Heavy Flavors: Unique Probes to Hot and Cold QCD

BERKELEY LAB

RHIC Mission: Quantitative Measure of QGP

BERKELEY LAB

What is the microscopic picture of "perfect fluid"?

Heavy Flavor Quark Transport in QGP

Heavy quark transport – to probe QGP with comprehensive p_T coverage - unique insights to both perturbative and non-perturbative regimes

Heavy Quark Diffusion Coefficient

<u>2015</u>

• $2\pi TD_s \sim up$ to 30 @ T_c

To determine HQ diffusion coefficient Precision measurement of D⁰ production (R_{AA} and v_2), particularly at low p_T

$$D^0 \to K^- \pi^+$$
 $c\tau \sim 123 \mu m$
 $\Lambda_c^+ \to p K^- \pi^+$ $c\tau \sim 60 \mu m$

Big Challenge

Combinatorial background in heavy-ion collisions

Silicon pixel detector to separate secondary decay vertex – STAR Heavy Flavor Tracker (HFT) upgrade – PHENIX VTX/FVTX upgrade

Outline

- Introduction
 - Heavy flavors: unique probes to study hot and cold QCD
- Heavy flavors at RHIC to date (-2021)
 - Quantifying QGP properties Phase-I
- Heavy flavors at RHIC in the near future (2022 202x)
 - Quantifying QGP properties Phase-II
 - Glimpsing at gluon distributions in nucleon/nucleus
- Heavy flavors at EIC (203x -)
 - Scrutinizing gluon dynamics in nucleon/nucleus
- Summary

STAR Heavy Flavor Tracker (HFT)

G. Contin et al, NIMA 907 (2018) 60

Detector	Radius (cm)	Pitch Size R/φ - Z (μm - μm)	Thickness
Silicon Strip Detector	22	95 / 40000	1% X ₀
Intermediate Silicon Tracker	14	600 / 6000	1.3%X ₀
DiVal	8	20.7 / 20.7	0.5%X ₀
FIAEL	2.8	20.7 / 20.7	0.4%X ₀ *

- First application of Monolithic Active Pixel Sensor (MAPS) at a collider experiment
- MAPS technology widely used/planned in NP experiments

rrr

- ALICE ITS2/ITS3, sPHENIX MVTX, CBM MVD, EIC Si Tracker

D⁰ Meson R_{AA}/R_{CP} in A+A Collisions

STAR, PRC 99 (2019) 034908

- $R_{AA}(D) \sim R_{AA}(h)$ at $p_T > \sim 4$ GeV/c
 - significant charm quark energy loss in the QGP medium
- $v_2(D)$ follows the $(m_T-m_0)/n_q$ scaling as light hadrons

Evidence of charm quarks reaching local thermal equilibrium!

D⁰ v₂ Compared with Models

STAR, PRL 118 (2017) 212301

XD, Y-J Lee & R. Rapp, Ann. Rev. Nucl & Part. Sci. 69 (2019) 417

- State-of-the-art model calculations from various approaches reasonably describe D⁰ meson v₂ data at RHIC
- Charm quark $2\pi TD_s \sim 2-5$ at near T_c
 - consistent with quenched lattice calculations
 - Iarger uncertainty in temperature dependence

Charm Spatial Diffusion Coefficient

<u>2015</u>

<u>2019</u>

Strongly interacting QGP!

D⁰ v₁ - sQGP Properties and Initial B-field

S. Chatterjee & P. Bozek, PRL 120 (2018) 192301

v₁(D) >> v₁(h)

rrrr

BERKELEY LAB

- Constraints on T-dependence of HQ diffusion coefficient
- v₁(D) v₁(Dbar) experimental uncertainty large
 - Need more precise measurement to access the B-field signal

STAR, PRL 123 (2019) 162301

Λ_c Reconstruction in Heavy-Ion Collisions

- Λ_c/D^0 ratio comparable to light/strange hadrons in A+A collisions
- Λ_c/D^0 enhancement w.r.t the PYTHIA predictions (w/ and w/o CR)
- Coalescence models qualitatively reproduce the large Λ_c/D^0 ratio

rrrr

Summary I: Heavy Flavor at RHIC to-date

Significant charm hadron flow -> 2πTD_s~ 2-5@T_c -> T-dependence, c vs. b universality, relation to η/s etc.

Large *D*_s/*D*⁰ and Λ_c/*D*⁰ enhancement -> coalescence hadronization -> precise heavy baryon, relation to color confinement

Outline

- Introduction
 - Heavy flavors: unique probes to study hot and cold QCD
- Heavy flavors at RHIC to date (-2021)
 - Quantifying QGP properties Phase-I
- Heavy flavors at RHIC in the near future (2022 202x)
 - Quantifying QGP properties Phase-II
 - Glimpsing at gluon distributions in nucleon/nucleus
- Heavy flavors at EIC (203x -)
 - Scrutinizing gluon dynamics in nucleon/nucleus Phase-II
- Summary

MAPS-based VTX (MVTX) @ sPHENIX

MVTX @ sPHENIX: Next generation fast MAPS detector (leveraging ALICE ITS2)

Precision Measurement of Open-Bottom Production

17

Fruitful Charm/Bottom Physics

.....

Impact on Charm Diffusion Coefficient

Bayesian analysis to constrain HQ diffusion coefficient - Weiyao Ke (Duke), HF Workshop, LBNL, 2019

Accessing Gluon Dynamics with (polarized) p+p

D-meson A_{LL}

- Gluon helicity distribution

D-meson A_N

BERKELEY LAB

- twist-3 tri-gluon correlation / gluon Sivers function

 $A_N(c) \neq A_N(\bar{c})$

CFNS Workshop on RHIC Science Informative towards EIC X. Dong/LBNL 5/24-26, 2021

Streaming DAQ for HF Program in p+p

Streaming recording 10% of all M.B. p+p collisions in 2024

- xO (500) improve compared to the triggered mode
- critical for low p_{T} charm/bottom hadron measurements for R_{AA} reference
- enable high statistics measurements of D-meson $A_{\!N}\!,A_{\rm LL}$ etc.

Opportunities with STAR Forward Upgrades

....

Forward tracking + calorimeters $2.5 < |\eta| < 4.0$ $x_p \approx \frac{p_T}{\sqrt{s}} e^y$ low x reach: 10^{-4} high x reach: $\sim 0.05 - 0.5$ Heavy flavors: cleaner probe to gluon distributions in nucleon/nucleus

- trigger capabilities?
- secondary vertex? or *D**?

STAR Forward Upgrade Opportunity

Introduction

- Heavy flavors: unique probes to study hot and cold QCD
- Heavy flavors at RHIC to date (-2021)
 - Quantifying QGP properties Phase-I
- Heavy flavors at RHIC in the near future (2022 202x)
 - Quantifying QGP properties Phase-II
 - Glimpsing at gluon distributions in nucleon/nucleus
- Heavy flavors at EIC (203x -)
 - Scrutinizing gluon dynamics in nucleon/nucleus
- Summary

Heavy Flavors at EIC

- EIC is a machine for precision investigation of gluon dynamics in nucleon/nucleus
- Heavy flavor in NC channel sensitive probe to initial gluons

rrrr

BERKELEY L

An All-Silicon Tracker Based on Ultra-Thin MAPS

- joining and leveraging ITS3 sensor R&D for EIC detector

rrrr

- other R&D associated with services, support, readout etc.

Momentum Resolution

All-Si tracker offers a momentum resolution satisfying the physics requirement

rrrrr

BERKELEY LAB

Inclusive Charm -> Gluon nPDF at High x

 $R_g^{Pb} = f_g^{Pb}(x, Q^2) / f_g^p(x, Q^2)$

E. Chudakov et al, 1610.08536

Charm Structure Function $F_2^{c\bar{c}}$ and Gluon nPDF

BERKELEY LAB

Gluon Helicity $\Delta g/g$

- HF better sensitivity to the gluon dynamics
 - complementary to the inclusive measurement
 - direct access to $\Delta g/g$ _ LO $~~A_{LL} \propto \hat{a}_{LL} \times \Delta g/g$

DD Pair - Probe Gluon TMDs

Quark Polarization Charm hadron pair in transverse polarized exp. **Un-Polarized** (U) - gluon Sivers functions L. Zheng et. al., PRD 98 (2018) 034011 **f**₁= • Nucleon Polarization Charm hadron pair in unpolarized exp. - linearly polarized Boer-Mulders function D. Boer et. al., JHEP 08 (2016) 001 $A_{UT}(\phi_{kS}, k_T) = \frac{d\sigma^{\uparrow}(\phi_{kS}, k_T) - d\sigma^{\downarrow}(\phi_{kS}, k_T)}{d\sigma^{\uparrow}(\phi_{kS}, k_T) + d\sigma^{\downarrow}(\phi_{kS}, k_T)}$ $\propto rac{\Delta^N f_{g/p^{\uparrow}}(x,k_{\perp})}{2f_{g/p}(x,k_{\perp})},$ <(2\$\phi^)> <0.05 $A_{UT}(\phi_{kS})$ Projected Luminosity 100 fb⁻¹ e + p 18 x 275 GeV $p_{D^{\circ}\overline{D^{\circ}}}^{D^{\circ}\overline{D^{\circ}}} > 0 \text{ GeV/c}$ 0.05 parton D⁰D⁰ -0.05 -0.05 $Q^{2} > 1 GeV^{2}$ Q² > 1 GeV² 0 2 4 • ~0.4% projected uncertainty on both A_{UT} and $\cos(2\phi_T)$ with 100 fb⁻¹ **rrrr**

BERKELEY LAB

2

3

Charm Hadrochemistry for Hadronization

BERKELEY LAB

arXiv: 2102.08337

ZEUS DIS (p_>0) 15=300/318GeV, hl<1.6

p_ (GeV/c)

PYTHIA8

QCD-based CR

---- MPI-based CR

ep 18x 275 GeV

ZEUS γ p (p_>3.8 GeV/c) w=130-300dev, h|<1.6

Summary

BERKELEY LAB

Acknowledgements

J. Bielcik, X. Chen, G. Contin, R. Cruz-Torres, C. Fu, V. Greco, L. Greiner, Y. Guo, M. Gyulassy, L. He, H. Huang, J. Huang, Y.F. Hong, B. Jacak, Y. Ji, X.Y. Ju, M. Kelsey, Y.J. Lee, Y. Liang, M.X. Liu, M. Lomnitz, L. Ma, S. Margetis, S. Mizuno, M. Mustafa, Md Nasim, G. Odyniec, K. Oh, H. Qiu, S. Radhakrishnan, R. Rapp, H.G. Ritter, A. Schmah, S. Shi, E. Sichtermann, M. Simko, S. Singha, X.M. Sun, Z.B. Tang, J. Thaeder, J. Thomas, J. Vanek, F. Videbaek, F. Wang, Y.P. Wang, H. Wieman, L. Xia, G. Xie, W. Xie, N. Xu, Z. Xu, Z. Ye, F. Yuan, Y.F. Zhang, Y.X. Zhao, L. Zhou ...

Backup

Uniqueness of Heavy Flavor Quarks

D⁰ v₂ Compared with pQCD Calculation

pQCD calculation and T-Matrix with F-pot. cannot reproduce the data

CFNS Workshop on RHIC Science Informative towards EIC 5/24-26, 2021 X. Dong/LBNL

Quantitative Measure of QGP

$2\pi TD_s$ vs. $4\pi\eta/s$

charm vs. bottom universality? momentum/temperature dependence?

D⁰ Meson R_{AA}/R_{CP} in A+A Collisions

D⁰ Radial Flow

D⁰ v₂ Compared with Models

- Large D⁰ v₂ ordinated from charm quark diffusion in QGP
- 3D viscous hydro consistent with D⁰ v₂ data up to 4 GeV/c

....

D+ and D*+ Production in Au+Au Collisions

- D+/D⁰, D*/D⁰ ratios consistent with PYTHIA model calculations
- No significant modification to charm-light meson production in A+A collisions

D_s^+/D^0 Enhancement in Au+Au Collisions

Models with coalescence hadronization

 + strangeness enhancement
 qualitatively reproduce the data

STAR, arXiv: 2101.11793

43

Statistical Hadronization

Feeddown contribution to Λ_c						
r_i	D^+/D^0	D^{*+}/D^0	D_s^+/D^0	Λ_c^+/D^0		
PDG(170) PDG(160)	$\begin{array}{c} 0.4391 \\ 0.4450 \end{array}$	$0.4315 \\ 0.4229$	$0.2736 \\ 0.2624$	$\begin{array}{c} 0.2851 \\ 0.2404 \end{array}$		
RQM(170) RQM(160)	$\begin{array}{c} 0.4391 \\ 0.4450 \end{array}$	$\begin{array}{c} 0.4315 \\ 0.4229 \end{array}$	$0.2726 \\ 0.2624$	$\begin{array}{c} 0.5696 \\ 0.4409 \end{array}$		

M. He & R. Rapp, PLB 795 (2019) 117

SHM: $\Lambda_c/D^0 \sim 0.25-0.3$ (PDG states)

However, ratio can be doubled when including charm baryon resonances

- existence of unmeasured charm baryon resonances supported by Lattice QCD calculation

A. Bazavov et al, PLB 737 (2014) 210

A. Andronic et al., arXiv:0710.1851

O

*D*⁰ v₁ - New Insight to sQGP Properties

S. Chatterjee & P. Bozek, PRL 120 (2018) 192301

S. Chatterjee & P. Bozek, PLB 798 (2019) 134955

Bottom Suppression at Low pT

BERKELEY LAB

Charm Hadrochemistry

ZEUS, JHEP 1309 (2013) 058

$$2\sigma_{c\bar{c}} = D^0 + D^+ + D_s^+ + \Lambda_c^+ + \text{c.c.}$$

60.8% 24.0% 8.0% 6.2%
Lisovyi, et. al. EPJ C 76 (2016) 397

Total Charm Production Cross Section

Charm Hadron		Cross Section dơ/dy (µb)		
	D^0	41 ± 1 ± 5		
Au+Au 200 GeV (10-40%)	D^+	18 ± 1 ± 3		
	D_s^+	15 ± 1 ± 5		
	Λ_c^+	78 ± 13 ± 28*		
	Total	152 ± 13 ± 29		
p+p 200 GeV	Total	130 ± 30 ± 26		

* extracted from 10-80%

Total charm cross section follows ~ N_{bin} scaling from p+p to Au+Au

lui)

Theory Uncertainties

Rapid developments among theorists to resolve/understand trivial/non-trivial differences between different models

EMMI Rapid Reaction Task Force Jet-HQ Working Group

- R. Rapp et al., NPA 979 (2018) 21
- S.S. Cao et al., PRC 99 (2019) 054907

Heavy Flavor Program at RHIC

	2014	2015	2016	2017	2018	2019	2020	2021	2022+
RHIC	HF Phase-I		рр	CME	BES-II		HF Phase-II		
LHC	LS1	S1 Run-2			LS2		Run-3		

Next generation MAPS pixel detectors: ITS2@ALICE, MVTX@sPHENIX Precision open bottom Heavy flavor baryons and correlations

.....

BERKELEY LAB

Pointing & Vertex Resolution

All-Si tracker pointing resolution: $\sigma_{r\phi} \sim 25 \mu m @ 1$ GeV/c ($|\eta| < 1$) - slight/anticipated degradation at higher η

All-Si tracker vertexing resolution: $\sigma_{XYZ} < 20 \mu m$ for HF events

- Satisfying experimental requirements for reconstructing charm/ bottom decays ($c au \sim 60-500 \ \mu m$)

EMC <-> Short-Range Correlation

Hadronization and CNM

Charm hadrochemistry

•••••

BERKELEY LAB

Cold Nuclear Matter Effect on

light/heavy hadron production

$D\overline{D}$ Pair - Probe Gluon TMDs

Charm hadron pair in transverse polarized exp. - gluon Sivers functions

Charm hadron pair in unpolarized exp. - linearly polarized Boer-Mulders function

$$\begin{split} A_{UT}(\phi_{kS},k_T) &= \frac{d\sigma^{\uparrow}(\phi_{kS},k_T) - d\sigma^{\downarrow}(\phi_{kS},k_T)}{d\sigma^{\uparrow}(\phi_{kS},k_T) + d\sigma^{\downarrow}(\phi_{kS},k_T)} \\ &\propto \frac{\Delta^N f_{g/p^{\uparrow}}(x,k_{\perp})}{2f_{g/p}(x,k_{\perp})}, \end{split}$$

BERKELEY LAB

Projection on Gluon Sivers Function

PYTHIA6 Simulation

al., PRD 98 (2018) 034011

arXiv: 2102.08337, EIC YR 2021

BERKELEY L

Kinematic Distributions

<u>e + p 18 x 275 PYTHIA 6.4</u>

n n n n n n

BERKELEY LAB

lui

Impact of Pointing Resolution on D⁰ Significance

- vertex res. assumed to be 20 μm

Full Simulation with Fun4All

BERKELEY LAB

Topological Reconstruction of Heavy Flavor Decays

BERKELEY LAB

ALICE

Specifications

Parameter	ALPIDE (existing)	Wafer-scale sensor (this proposal)
Technology node	180 nm	65 nm
Silicon thickness	50 μm	20-40 μm
Pixel size	27 x 29 μm	O(10 x 10 µm)
Chip dimensions	1.5 x 3.0 cm	scalable up to 28 x 10 cm
Front-end pulse duration	~ 5 µs	~ 200 ns
Time resolution	~ 1 µs	< 100 ns (option: <10ns)
Max particle fluence	100 MHz/cm^2	100 MHz/cm^2
Max particle readout rate	10 MHz/cm ²	100 MHz/cm^2
Power Consumption	40 mW/cm^2	< 20 mW/cm ² (pixel matrix)
Detection efficiency	>99%	> 99%
Fake hit rate	< 10 ⁻⁷ event/pixel	< 10 ⁻⁷ event/pixel
NIEL radiation tolerance	$\sim 3 \times 10^{13} 1 \text{ MeV } n_{eq}/\text{cm}^2$	$10^{14} 1 \text{ MeV } n_{eq}/cm^2$
TID radiation tolerance	3 MRad	10 MRad

Benefits of Ultra-thin Fine-pitch MAPS Detector

Low-p_T Cut-off and D* Reconstruction

BERKELEY LAB CFNS WO

Kinematic Distributions

<u>e + p 18 + 275 PYTHIA 6.4</u>

.....

Inclusive Charm -> Gluon nPDF at High x

 $R_g^{Pb} = f_g^{Pb}(x, Q^2) / f_g^p(x, Q^2)$

E. Chudakov et al, 1610.08536

Momentum Resolution (DM)

Pointing Resolution

η Region	Resolution (%)	η Region	Detector Matrix (μm)	Stringent (µm)
$\frac{7}{-3.5 < n < -2.5}$	$0.1 \cdot n \oplus 0.5$	$-3.0 < \eta < -2.5$	$30/p_T \oplus 40$	$30/p_T\oplus 10$
-25 < n < -20	$0.1 p \oplus 0.0$ 0.1 m \oplus 0.5	$-2.5 < \eta < -2.0$	$30/p_T\oplus 20$	$30/p_T\oplus 10$
$-2.5 < \eta < -2.0$	$0.1^{\circ}p \oplus 0.5$	$-2.0 < \eta < -1.0$	$30/p_T\oplus 20$	$25/p_T\oplus 10$
$-2.0 < \eta < -1.0$	$0.05 \cdot p \oplus 0.5$	$-1.0 < \eta < 1.0$	$20/p_T \oplus 5$	$20/p_T\oplus 5$
$-1.0 < \eta < 1.0$	$0.05 \cdot p \oplus 0.5$	$1.0 < \eta < 2.0$	$30/p_T \oplus 20$	$25/p_T\oplus 10$
$1.0 < \eta < 2.5$	$0.05{\cdot}p \oplus 1.0$	$2.0 < \eta < 2.5$	$30/p_T\oplus 20$	$30/p_T\oplus 10$
$2.5 < \eta < 3.5$	$0.1{\cdot}p \oplus 2.0$	$2.5 < \eta < 3.0$	$30/p_T \oplus 40$	$30/p_T\oplus 10$
	•	$3.0 < \eta < 3.5$	$30/p_T\oplus 60$	N/A

PID criteria follows the Detector Matrix table guidance (K/ π 3 σ separation up to 7 GeV/c within $|\eta|$ <1)

- Charm and bottom reconstruction using fast simulation smearing of PYTHIA 6.4 output
- Momentum and pointing resolutions taken from detector matrix page as baseline
 - A more stringent pointing resolution also used for comparison

Validation of Fast Simulation w/ Fun4All

Fast simulation reproduces all topological distributions and D⁰ efficiency !

CFNS Workshop on RHIC Science Informative towards EIC

X. Dong/LBNL

5/24-26, 2021