Photon-jet and Dijets from RHIC to the EIC

Joe Osborn

Oak Ridge National Laboratory

May 25, 2021

Photon-Jet and Dijet Physics

- A wide range of physics is accessible from photon-jets and dijets
 - Unpolarized PDFs and NⁿLO physics
 - Spin physics ΔG, TMDs, transversity etc. (See Renee Fatemi's talk)
 - Fragmentation and Hadronization FFs, TMDFFs
 - Partonic energy loss
 - Diffractive structure functions
 - Possible effects from entanglement
 - . . .
- Disclaimer: Impossible to robustly cover all of these topics in 30 minutes. I'll only discuss some which have been most covered by previous and upcoming RHIC measurements

- Jet physics is a broad experimental endeavor at RHIC and the LHC
- Enabled by more robust comparisons that can be made between theory and experiment with recent jet finding algorithms

- Jet physics is a broad experimental endeavor at RHIC and the LHC
- Enabled by more robust comparisons that can be made between theory and experiment with recent jet finding algorithms
- Jets are a proxy for partons, and thus provide sensitivity to the underlying partonic dynamics
- Dijets and γ-jets are an optimal proxy for 2 → 2 scattering kinematics in hadronic collisions

Jets

- BUT jets are still formed from final-state hadrons!
- Nonperturbative elements of QCD still important in understanding perturbative jets

Jets

- BUT jets are still formed from final-state hadrons!
- Nonperturbative elements of QCD still important in understanding perturbative jets
- We can use a perturbative object to learn about nonperturbative physics
- One of the fundamental questions we are all trying to answer - how do the nonperturbative and perturbative aspects of QCD lead to what we measure?
 - Jets are inherently a multiscale observable (making them interesting)

• What is on our wish list to *robustly* study jet production?

- What is on our wish list to *robustly* study jet production?
 - 1. A way to connect the initial-state parton to the final-state hadrons
 - Jets, as a proxy for a parton, are a tool to connect the perturbative to nonperturbative

- What is on our wish list to *robustly* study jet production?
 - 1. A way to connect the initial-state parton to the final-state hadrons
 - Jets, as a proxy for a parton, are a tool to connect the perturbative to nonperturbative
 - 2. A way to connect the flavors of the initial-state parton to the final-state hadrons
 - Would allow for complete characterization of parton \rightarrow hadron

- What is on our wish list to *robustly* study jet production?
 - 1. A way to connect the initial-state parton to the final-state hadrons
 - Jets, as a proxy for a parton, are a tool to connect the perturbative to nonperturbative
 - 2. A way to connect the flavors of the initial-state parton to the final-state hadrons
 - Would allow for complete characterization of parton \rightarrow hadron
 - 3. Statistics to study multi-differential correlations

- Parton flavor studies
- Resonance production (ϕ , J/ψ , Υ)
- Correlations (e.g. kinematic, PIDed...)
- ...

What can we do before EIC?

- What is on our wish list to *robustly* study jet production?
 - 1. A way to connect the initial-state parton to the final-state hadrons
 - Jets, as a proxy for a parton, are a tool to connect the perturbative to nonperturbative
 - 2. A way to connect the flavors of the initial-state parton to the final-state hadrons
 - Would allow for complete characterization of parton \rightarrow hadron
 - 3. Statistics to study multi-differential correlations

RHIC - the polarized collider

- A host of new jet *A*_{*LL*} measurements have recently been published
- $\bullet\,$ STAR dijet at 200 and 510 GeV
 - Phys. Rev. D 100, 052005 (2019) (Run 12 @ 510 GeV)

- A host of new jet *A*_{*LL*} measurements have recently been published
- STAR dijet at 200 and 510 GeV
 - Phys. Rev. D 100, 052005 (2019) (Run 12 @ 510 GeV)
 - arXiv:2103.05571

- A host of new jet *A*_{*LL*} measurements have recently been published
- STAR dijet at 200 and 510 GeV
 - Phys. Rev. D 100, 052005 (2019) (Run 12 @ 510 GeV)
 - arXiv:2103.05571
- Also preliminary PHENIX inclusive jet, direct photon *A*_{LL}

- A host of new jet *A*_{*LL*} measurements have recently been published
- STAR dijet at 200 and 510 GeV
 - Phys. Rev. D 100, 052005 (2019) (Run 12 @ 510 GeV)
 - arXiv:2103.05571
- Also preliminary PHENIX inclusive jet, direct photon *A*_{LL}
- Impact of Run 13 $\sqrt{s} = 510$ GeV data will be seen with latest results and STAR dijet results!

IFF Measurements

 New interference FF results from Run-15 STAR have much improved precision

B. Pokhrel, DIS 2021

IFF Measurements

- New interference FF results from Run-15 STAR have much improved precision
- Important measurements to complement available SIDIS data
 - Cover similar x region but at high Q^2
 - Looking forward to EIC with broad x - Q² coverage

Phys. Lett. B 780, 332-339 (2018)

TMD Related Measurements

B. Pokhrel, DIS 2021

- New STAR Collins results with PID(!)
- Should make the most use of PID as possible towards EIC (e.g. at STAR, ALICE, LHCb)
- See more in hadronization, later

- STAR has recently updated their dijet Sivers measurement from 2006
- Nonzero asymmetry when charge tagging is employed at the jet level
- See R. Fatemi's, Z. Kang's talks earlier today

QCD Color Effects

- QCD is unique due to non-abelian nature gluon self coupling
- Leads to fundamental predictions of the field theory
 - Sign change of PT odd TMDPDFs (e.g. Sivers, Boer Mulders)
 - Factorization breaking of certain processes
- PHENIX measured direct γh^{\pm} and $\pi^0 - h^{\pm}$ correlations to provide first measurements of TMD factorization breaking predictions
 - Calculations assuming factorization for comparison needed

Phys. Rev. D 98, 072004 (2018)

QCD Color Effects

- Towards EIC what can we learn from comparing available RHIC data to current ep, e⁺e⁻ data?
- Emphasizes making measurements that are as kinematically comparable as possible for robust systems comparisons

SIDIS TMD Data

- HERA data being re-analyzed given new results from RHIC/LHC in last decade
- Emphasizes reusability of RHIC data! What will we want to re-analyze in the 2030s given new EIC information?

RHIC - the jet factory

STAR Soft Drop

- New STAR results are first study at RHIC of Soft Drop splittings
- Highlight R_G, which shows need for more robust theory calculations relating fragmentation and hadronization effects

STAR Soft Drop

R. Elayavalli, DIS 2021

- New STAR results are first study at RHIC of Soft Drop splittings
- Highlight R_G, which shows need for more robust theory calculations relating fragmentation and hadronization effects
- Statistics allow for multi-differential measurements

Partonic Contributions

- Alter partonic contributions of underlying hard scattering processes
- ATLAS γ-jet compared to inclusive jet FFs

Phys. Rev. Lett. 123, 042001 (2019)

- Alter partonic contributions of underlying hard scattering processes
- ATLAS γ -jet compared to inclusive jet FFs
- LHCb γ/Z^0 -jet compared to inclusive jet TMD FFs

Phys. Rev. Lett. 123, 232001 (2019)

Partonic Contributions

 CMS γ/Z⁰-jet and inclusive jet generalized angularities

CMS-SMP-20-010 (2021)

Flavor Dependence - Heavy Quarks

- First study trying to observe the dead cone effect
- Suppression of splittings at small angles comparing D⁰ to inclusive jets

Universality of FFs

- New results from ALICE challenging universality of charm fragmentation fractions!
- More measurements like this needed, directly comparing observables between collision systems
- Can help guide EIC measurements

arXiv:2105.06335

LHC measurements \rightarrow RHIC measurements

sPHENIX at RHIC

- Much of this points to sPHENIX capabilities, which will have dedicated γ-jet, c and b-jet (hadronization) studies
- I will not steal John's thunder, who will tell us about sPHENIX in the next talk!

Jet Substructure at the EIC

The available PIDed (z, j_T) phase space that could be probed with Jet/HF PWG PID requirements

- Jet substructure will play an important role in EIC physics
- See e.g. EIC Yellow Report, where jet substructure considerations were important for guiding detector requirements

Jet Substructure at the EIC

The available PIDed (z, j_T) phase space that could be probed with Jet/HF PWG PID requirements The ratio of the PID detector matrix requirements to Jet/HF PWG PID

- Jet substructure will play an important role in EIC physics
- See e.g. EIC Yellow Report, where jet substructure considerations were important for guiding detector requirements

RHIC - the heavy ion collider

√s [GeV]	_p+p	p+AI	ptau	d	³ Hetau	Cure	Cu+Au	Au+Au	U+U
510									
200			Ø	Ø		Ø	Ø		Ø
130									
62.4				Ø		Ø		Ø	
39				Ø				Ø	
27									
20									
14.5									
7.7									

• RHIC is a versatile heavy ion machine (STAR has expanded this even further!)

Energy Loss and Gluon Saturation

 PHENIX measured nuclear dependent charged hadron azimuthal widths at midrapidity

Phys. Rev. C 99, 044912 (2019)

Energy Loss and Gluon Saturation

- PHENIX measured nuclear dependent charged hadron azimuthal widths at midrapidity
- STAR has measured nuclear dependence for di- π^0 production at forward rapidity
 - Maybe a small event activity dependence? Note different rapidities
- See Xiaoxuan's talk on Monday

Relation to A dependent A_N ?

Phys. Rev. D 103, 172005 (2021)

 Differences in nuclear dependence of transverse single spin asymmetry also seen between charged/neutral and different rapidity regimes. What is the underlying physics relation?

Towards the EIC

I Helenius, J. Lajoie, JDO, P. Paakkinen, H. Paukkunen - Phys. Rev. D 100, 014004 (2019)

- Utilize simultaneous observables to improve nPDF fits
 - Reduces overall normalization uncertainties in R_{pA} measurements
- Utilize versatility of RHIC as a heavy ion collider
- RHIC future experiments (fSTAR and sPHENIX) will have the capabilities to weigh in on this

Towards the EIC

I Helenius, J. Lajoie, JDO, P. Paakkinen, H. Paukkunen - Phys. Rev. D 100, 014004 (2019)

- Utilize simultaneous observables to improve nPDF fits
 - Reduces overall normalization uncertainties in R_{pA} measurements
- Utilize versatility of RHIC as a heavy ion collider
- RHIC future experiments (fSTAR and sPHENIX) will have the capabilities to weigh in on this

Towards the EIC

- sPHENIX and STAR will have robust p+A programs in the final years of RHIC
- Still much more to come from both experiments in preparation for EIC

Looking towards the EIC

Conclusions

- Photon-jet and dijet probes have accessed a huge range of physics at RHIC
 - Unpolarized PDFs and cross sections
 - Fundamental questions of QCD
 - e.g. Sivers measurements, entanglement
 - Spin ΔG , TMDPDFs, TMDFFs, transversity...
 - Nuclear modification of observables (or lack thereof...)
 - e.g. dihadrons, A_N , FFs
- Much more to come from both STAR upgrades and sPHENIX! Input from LHC will be important for guiding future measurements
- Emphasis towards EIC
 - What must we measure now when we will no longer have a hadronic collider operating in a similar \sqrt{s} regime?
 - Data preservation HERA/LEP data being reanalyzed now within context of RHIC/LHC results! What will we want to come back to when given the context of EIC data?

Back up

- Archived ALEPH data used to compare long range correlation in e⁺e⁻ to hadronic collisions
- Importance of (again)
 - Archiving data for later use (who knows what we will discover)
 - Comparison of different systems

Phys. Rev. Lett. 123, 212002 (2019)

Nuclear Modification of Hadronization

Phys. Rev. C 102, 054910 (2020)

 PHENIX has measured the nuclear modification of γ – h[±] correlations in d+Au and Au+Au

Nuclear Modification of Hadronization

Phys. Rev. C 102, 044908 (2020)

- PHENIX has measured the nuclear modification of γ – h[±] correlations in d+Au and Au+Au
- Direct γ h[±] studied at ALICE in p + p, p + Pb, results consistent with PHENIX d+Au
- At RHIC, look towards sPHENIX and STAR upgrade, which will provide both γ -jet and γ -hadron