

LANL Forward Silicon Tracker for Jet and Heavy Flavor Measurements in EIC

Cheuk-Ping Wong on Behalf of LANL EIC Team 12-07-2020

Outline

- Motivation: Propose a forward silicon tracker (FST) to measure heavy flavor and jet in EIC
- A forward silicon trackers:
 - Detector design and material budgets
 - Detector performance
- Overview of physics studies
- Summary and outlook

Heavy Flavor Identification

The LANL FST is proposed for the heavy flavor and jets studies in the $1 < \eta < 3.5$ region

Cheuk-Ping Wong

Simulation Setup

- Fun4All Simulation: Geant based simulation package developed by PHENIX collaboration at BNL
- Both BeAST (max. 3T) and Babar (max. 1.4T) magnets are tested
- Event configuration:
 - single (10) π per event for momentum (vertex) reconstruction
 - Vertex (0,0,0)
 - 20um smearing in x and y direction for track reconstruction
 - no smearing for vertex reconstruction
 - 7.5M events in each p (p_T) bin
- Track configuration:
 - p (p_T): **1-30 GeV**
 - Pseudorapidity correction for ion beam angle
 - Pseudorapdity: 1-3.5 w.r.t. to the beam pipe
 - Hit efficiency at 95%

EIC FST Setup in Fun4All

Material Budget: FST(6 planes)+RICH

- Mockup Gas RICH by LBNL with dual radiators: aerogel and C₂F₆ gas
- Total material budget (blue) is <8% at $\eta < 3.3$

Material Budget: FST(5 planes)+RICH+GEM

- Replacing the last plane (z=300cm) of FST by a GEM tracker could be a cost-effective option
- Mockup GEM tracker: 3-plane / methane / $1.5 < \eta < 3.5$
- Total material budget (magenta) is ~10% at $\eta < 3.3$

Mom. Res. of EIC FST (BeAST Magnet)

- Momentum resolution <4%
- The Gas RICH worsen the mom res by ~1% at $\eta > 2.5$
- Changes in mom resolution is small when the last plane of FST is replaced with the GEM

DCA_{2D} Res. of EIC FST with BeAST Magnet

- $\eta < 2: {\rm DCA_{2D}}$ res <50um / $\eta > 2: {\rm DCA_{2D}}$ res <110um
- Similar results with the use of the Babar magnet

Overview of Physics Studies

The full analysis framework includes the event generation (PYTHIA), detector response in GEANT4 simulation, beam remnant & QCD background, and hadron reconstruction algorithm

- Projection of R_{eA} including pseudorapidity dependence study can help constraint theoretical predictions

Overview of Physics Studies

The full analysis framework includes the event generation (PYTHIA), detector response in GEANT4 simulation, beam remnant & QCD background, and hadron reconstruction algorithm

12/7/20

Summary

- Integrated detector setup in Fun4All simulation with a 5/6-plane FST
 - Momentum resolution <4% with the used of BeAST magnet
 - DCA_{\rm 2D} resolution <50um for $\eta<2$ and DCA_{\rm 2D} resolution <110um for $\eta>2$
 - Replacing the last plane of FST with a GEM does not make a significant difference in detector performance
- Physics studies of heavy flavor R_{eA} and jet angularity
 - Help constraint theoretical predictions
 - Distinguish quark/gluon jets and nuclear medium effect in e+A collisions

EIC FST technical notes - arXiv:2009.02888v1

Outlook

Detector R&D work underway

- Bench test for the LGAD & MALTA received
- FST prototype development and beam test

Cheuk-Ping Wong

Outlook

Physics Study

Back Up

Cheuk-Ping Wong

Fitting Parameters of Momentum Resolution $\frac{\Delta p}{p}(p) = \sqrt{(Ap)^2 + B^2}$

η	B field	FST (6 planes)		FST (6 planes) + RICH		FST (5 planes) + RICH + GEM	
		A (%/GeV)	B (%)	A (%/GeV)	B (%)	A (%/GeV)	B (%)
1.0–1.5	3 T	0.039	0.568	0.040	0.551	0.032	0.597
	1.5 T	0.076	1.039	0.077	1.120	0.070	1.088
1.5-2.0	3 T	0.019	0.454	0.018	0.448	0.013	0.445
	1.5 T	0.039	0.839	0.039	0.882	0.026	0.876
2.0-2.5	3 T	0.032	0.687	0.035	0.682	0.028	0.704
	1.5 T	0.068	1.346	0.070	1.374	0.051	1.402
2.5-3.0	3 T	0.037	1.190	0.062	1.306	0.062	1.336
	1.5 T	0.086	2.362	0.127	2.607	0.123	2.629
3.0-3.5	3 T	0.063	1.746	0.095	2.069	0.095	2.278
	1.5 T	0.124	3.378	0.189	4.305	0.189	4.868

- BeAST vs Babar: Fitting parameters with the use of Babar magnet are about double of the use of BeAST magnet
- $\eta < 2.5$: Comparable values between different detector systems
- η > 2.5: Fitting parameters increases with the more integrated detector systems

Fitting Parameters of DCA_{2D} Resolution

$$DCA(p_T) = \sqrt{\left(\frac{A}{p_T}\right)^2 + B^2}$$

η	FST (6 pla	ines)	FST (6 planes)	+ RICH	FST (5 planes) + RICH + GEM	
	$A \; (\mu m \; \cdot GeV)$	$B\;(\mu m)$	$A \; (\mu m \; \cdot GeV)$	$B\;(\mu m)$	A ($\mu m \cdot GeV$)	Β (μm)
1.0 - 1.5	41.54	14.19	39.47	14.39	40.73	14.06
1.5 - 2.0	49.57	8.24	48.49	8.43	51.56	7.36
2.0-2.5	57.87	13.73	54.79	14.16	59.58	11.48
2.5 - 3.0	76.78	20.42	81.63	21.13	83.90	20.35
3.0-3.5	77.79	29.71	95.90	30.01	104.95	31.55

- BeAST vs Babar: comparable fitting parameters
- η < 2.5: Comparable values between different detector systems
- η > 2.5: Fitting parameters increases with the more integrated detector systems

