

Slow Control and Online Monitor of FST

Xu Sun University of Illinois @ Chicago

FST Crate Slow Control

- Re-use of old IST slow control.
 - FST use the same crate and readout system as IST
 => a natural choice to re-use old IST slow control system.
- GUI for Shift Crew
 - Operation is based on a set of shell script => each button connects to a shell script with snmp command to control the MPOD Crates.
 - Monitor and alarm are though sequencer.
 - Need to modify old IST sequencer for FST setup => adjust HV setting and current limit for FST.
 - Need to modify old IST GUI for FST => adjust naming and pictures.
- GUI for Expert
 - Operation, monitor and alarm are all based on sequencer.
 - Need to modify old IST sequencer for FST setup => same database shared with shift crew GUI.
 - Need to modify old IST GUI for FST => adjust naming and pictures.

Shift Crew GUI

01/20/2021

FST Crate Slow Control Status

FstOff.sh

FstOn.sh

	HV outputs are on Now truning ON	Power Status is = on
RNING CRATES ON	The HV-channels' Voltage are ramping up	
	Ramping up the high voltage. Current high voltage: 0.060830	TURNING CRATES OFF
er Status is = off Now TURNING ON	Ramping up the high voltage. Current high voltage: 0.060830	
er Status is = on Now	Ramping up the high voltage. Current high voltage: 0.060830	
t 10 seconds	Ramping up the high voltage. Current high voltage: 9.503280	
t 9 seconds	Ramping up the high voltage. Current high voltage: 14.823406	OK Dude All HV outputs is setting to off NOW
t 8 seconds	Ramping up the high voltage. Current high voltage: 20.139395	
t 7 seconds	Ramping up the high voltage. Current high voltage: 25.086199	The HV-channels' Voltage are ramping down
t 6 seconds	Ramping up the high voltage. Current high voltage: 30.043146	Ramping down the high voltage. Current high voltage: 70,025330
t 5 seconds	Ramping up the high voltage. Current high voltage: 35.346828	Ramping down the high voltage. Current high voltage: 65,833060
t 4 seconds	Ramping up the high voltage. Current high voltage: 40.306118	Demoing down the high voltage. Current high voltage. 60 002016
t 3 seconds	Ramping up the high voltage. Current high voltage: 45.617260	Ramping down the high voltage. Current high voltage: 00.802010
t 2 seconds	Ramping up the high voltage. Current high voltage: 50.564358	Ramping down the high voltage. Current high voltage: 55.594112
t 1 seconds	Ramping up the high voltage. Current high voltage: 55.874786	Ramping down the high voltage. Current high voltage: 50.646397
nnelCount= 8	Ramping up the high voltage. Current high voltage: 60.830929	Ramping down the high voltage. Current high voltage: 45.363811
u1 u2 u3 u4 u5 u6 u7	Ramping up the high voltage. Current high voltage: 65.784393	Ramping down the high voltage. Current high voltage: 40,421856
Voltage for channel u0 to 70.0V	Ramping up the high voltage. Current high voltage: 69.962128	Ramping down the high voltage. Current high voltage: 35,458782
Current for channel u0 to 10uA	Ramping up the high voltage. Current high voltage: 69.968475	Pamping down the high voltage. Current high voltage: 30 178055
tageRiseRate for channel u0 to 5.0V	Ramping up the high voltage. Current high voltage: 69.972260	Ramping down the high voltage. Current high voltage. 35,17005
tageFallRate for channel u0 to 5.0V	Ramping up the high voltage. Current high voltage: 69.972992	Ramping down the high voltage. Current high voltage: 25.232362
Voltage for channel u1 to 70.0V	Ramping up the high voltage. Current high voltage: 69.976410	Ramping down the high voltage. Current high voltage: 19.58/442
Current for channel u1 to 10uA	Ramping up the high voltage. Current high voltage: 69.977264	Ramping down the high voltage. Current high voltage: 14.655784
tageRiseRate for channel u1 to 5.0V	Ramping up the high voltage. Current high voltage: 69.977264	Ramping down the high voltage. Current high voltage: 9.361171
tageFallRate for channel u1 to 5.0V	Ramping up the high voltage. Current high voltage: 69.977753	Ramping down the high voltage. Current high voltage: 4.437953
Voltage for channel u2 to 70.0V	Ramping up the high voltage. Current high voltage: 69.978973	Ramping down the high voltage. Current high voltage: 0.060830
Current for channel u2 to 10uA	Ramping up the high voltage. Current high voltage: 69.980682	Wait 10 seconds before EST turned off
tageRiseRate for channel u2 to 5.0V	Ramping up the high voltage. Current high voltage: 69.982/58	Wait 10 seconds To TIDN OF FST
tageFallRate for channel u2 to 5.0V	Ramping up the high voltage. Current high voltage: 69.998138	Wait to seconds. To TURN OFF FST
Voltage for channel u3 to 70.0V	Ramping up the high voltage. Current high voltage: 69.99/894	Walt 9 seconds. To TURN OFF FST
Current for channel u3 to 10uA	Ramping up the high voltage. Current high voltage: 69.999359	Wait 8 seconds. To TURN OFF FST
tageRiseRate for channel u3 to 5.0V	Ramping up the high voltage. Current high voltage: 69.999969	Wait 7 seconds. To TURN OFF FST
tageFallRate for channel u3 to 5.0V	Ramping up the high voltage. Current high voltage: /0.001312	Wait 6 seconds. To TURN OFF FST
Voltage for channel u4 to 70.0V		Wait 5 seconds. To TURN OFF FST
Current for channel u4 to 10uA	WARNING Please wait to stablize the HV outputs	Wait 4 seconds To TURN OFF EST
tageRiseRate for channel u4 to 5.0V	Wall 10 Seconds	Wait - Seconds To TURN OFF FST
tageFallRate for channel u4 to 5.0V	Wall 9 Seconds	
Voltage for channel u5 to 70.0V	Wall o Seconda	Walt 2 Seconds. To TURN OFF FST
Current for channel u5 to 10uA	Walt / Seconds	Wait 1 seconds. To TURN OFF FST
tageRiseRate for channel u5 to 5.0V	Wait & Seconds	Power Status is = on Now truning OFF
tageFallRate for channel u5 to 5.0V	Wait 5 Seconds	Power Status is = off Now
Voltage for channel u6 to 70.0V	Wait 4 Seconds	
Current for channel u6 to 10uA	Wait 2 seconds	
tageRiseRate for channel u6 to 5.0V	Wait 1 seconds	
tageFallRate for channel u6 to 5.0V		EST wort to Sloop Byo Byo ())
Voltage for channel u7 to 70.0V		rst went to steep bye bye ://
Current for channel u7 to 10uA	EST is AWAKE let's do some BigBang	
tageRiseRate for channel u7 to 5.0V		
bara [a]] Data far abarral $u7$ to $[a]/l$		

- The scripts are updated for FST and tested on BNL local test stand.
- The scripts are also tested on softioc4 and used in the DAQ integration test.
- Next step is to update sequencer.

01/20/2021

Pow Pow Wai

Wai

Wai Wai Wai

Wai

Wai

Wai

Waiiwa Waiiwa Setul Setu

Xu Sun—fSTAR Face-to-Face Meeting

FST Crate Slow Control Status

- The base of EPICs, ASYN and Sequencer (same as GMT) are compiled on softioc4 => with the help of David and Jarda.
- Old IST software are compiled with the base.
- Cannot turn on the IOC for IST/FST (crashed with memory corruption)
 - May relate to the conflict between software and SL7.
 - Same for GMT which needs to be ready before the run 21 start.
- Will move forward for FST HV slow control update after IOC issue got fixed => David and Jarda are working on that now.
- Expect 1~2 weeks to complete the update to FST after IOC issue fixed.
 - May need to keep FST MPOD Crate on in the beginning of the run 21 (with interlock cheater or STAR interlock?).

FST Cooling Slow Control

Setpoint Limits

High 60 60 degC

Low [16 16 degC

16

70

Coolant

Fluid

Water -

EPICS Interface

- Re-use of old IST cooling slow control. • FST use the same cooling system as IST => a natural choice to re-use old
 - IST cooling slow control system.
- GUI for Expert
 - Operation, monitor and alarm are all based on sequencer.
 - Need to modify old IST sequencer for FST setup => adjust flow speed limits
 - Need to modify old IST GUI for FST => adjust naming and pictures.
- Updates will start after the IOC issue got fixed and cooling system back online.
 - May need to keep FST cooling system on in the beginning of the run 21.

Online Monitoring

- Re-use the old IST online QA plots with modification for FST.
- Able to check out and compile old IST code.
- Need to update to FST geometry.
- Will test with the data collected in the DAQ integration test, then send to Jeff for implementation.

Summary and Outlook

- Slow Control High Priority
 - The base and IST software are compiled.
 - The shell scripts are ready for HV Shift Crew GUI.
 - Need to update the sequencer for both HV and Cooling slow control system.
 - The sequencer and GUI updates will start after the IOC issue fixed.
- Online Monitor
 - The code is checked out and compiled.
 - Will start the updates after the updates of slow control system.

Testing Schedule at FNAL/UIC

Goals: assembly and test 48 FST modules.

Test Schedule and Manpower:

- Xu Sun
 - Jan 2021: setup test stand at Fermi Lab SiDet => Installed DAQ software with the help of Tonko.
 - Jan March 2021: train Shenghui and test first batch of module at FNAL.
- Shenghui Zhang
 - Jan May 2021: test the rest of modules at FNAL.
- Zhenyu Ye
 - Will be around if additional man power is need.
- Andres Aguilar and Gavin Wilks
 - Cosmic ray and laser testing at UIC on a fraction of modules.

Installation Schedule at BNL

Test Stand for Cooling Integration Test

- Modules (48) will be tested with the test stand after arrived at the BNL and after installed on the support structure.
- All installed modules (36) will be tested with STAR DAQ after full installation.

Goals: test 48 FST modules and install 36 FST modules to the support structure. Test Schedule and Manpower:

• UIC

- Xu Sun
 - Will go to BNL in the end of March (early April) with 1st batch of FST modules (6).
 - Set up test stand and assembly space in the clean room => will be the same as the one used in cooling integration test.
 - Stationed at BNL until the detector is fully installed and commissioned.
- Zhenyu Ye & Gavin Wilks
 - Will come to BNL in middle of May (when the spring semester is over) and stay until end of August (when the Fall semester starts).
- BNL
- Prithwish Tribedy & Yu Hu
 - Will be around all the time.
 - Set up the test stand and test the FST modules.