Electromagnetic currents induced by color fields

Naoto Tanji

May-September 2014: BNL as a brain circulation fellow
October 2014-Present: University of Heidelberg
Outline

- Introduction:
 photon puzzle and photon production in glasma

- Electromagnetic current:
 an important building block to compute photon spectra

- EM current in uniform color electric fields
 - Abelianization
 - SU(2) vs. SU(3)
 - Color direction dependence

- Inhomogeneous color fields
Photon puzzle

Direct photon excess

Hydrodynamic models fail to describe simultaneously photon yield, temperature and v2.

Large photon v2

photons production in pre-equilibrium?

Geometrical scaling

C.K-Boesing, L.McLerran (2014)
Quark production in glasma

Glasma gauge fields produce quarks

Quarks are accelerated or kicked by the gauge fields

Chemical and thermal equilibration?

can be computed by real-time lattice simulations with the classical(-statistical) approximation of gauge fields

N.T. and Gelis, in progress
Kasper, Hebenstreit and Berges (2014)
Quark production in glasma

Glasma gauge fields produce quarks

Quarks are accelerated or kicked by the gauge fields

Chemical and thermal equilibration?

can be computed by real-time lattice simulations
with the classical(-statistical) approximation of gauge fields

N.T. and Gelis, in progress
Kasper, Hebenstreit and Berges (2014)
Quark production in glasma

Glasma gauge fields produce quarks

Quarks are accelerated or kicked by the gauge fields

Chemical and thermal equilibration?

- can be computed by real-time lattice simulations
- with the classical(-statistical) approximation of gauge fields

N.T. and Gelis, in progress
Kasper, Hebenstreit and Berges (2014)
Photon production in glasma

Glasma gauge fields produce quarks

Quarks are accelerated or kicked by the gauge fields

Chemical and thermal equilibration?

During these processes, quarks can emit photons.

Can we see glasma by photons?
Photon production formula

In thermal equilibrium,

\[
\omega \frac{dR}{d^3 k} = -\frac{g^{\mu\nu}}{2(2\pi)^3} \int d^4 x \, e^{ik \cdot x} \langle J_\mu(0) J_\nu(x) \rangle_\beta
\]

Extension to non-equilibrium....

One of characteristic features of a non-equilibrium state is nonzero current expectation.

\[
\langle J_\mu(x) \rangle = e \langle \overline{\psi}(x) \gamma_\mu \psi(x) \rangle \neq 0
\]

Gives the same order contribution in \(\alpha \) as the connected one-loop.

McLerran and Toimela (85), Weldon (90), Gale and Kapsta (91)
Photon production formula

In thermal equilibrium,

\[\frac{dR}{d^3 k} = -\frac{g^{\mu\nu}}{2(2\pi)^3} \int d^4 x \, e^{ik \cdot x} \left\langle J_\mu(0) J_\nu(x) \right\rangle_\beta \]

Extension to non-equilibrium....

One of characteristic features of a non-equilibrium state is nonzero current expectation.

\[\left\langle J_\mu(x) \right\rangle = e^{\langle \bar{\psi}(x) \gamma_\mu \psi(x) \rangle} \neq 0 \]

Gives the same order contribution in \(\alpha \) as the connected one-loop

McLerran and Toimela (85), Weldon (90), Gale and Kapsta (91)
Abelianization of color fields

\[F_{\mu\nu}^a(x) = F_{\mu\nu}(x) n^a \]

\[A_\mu^a(x) = A_\mu(x) n^a \]

Diagonalize \(n^a T^a \)

\[D_\mu \psi = [\partial_\mu + ig A_\mu n^a T^a] \psi \rightarrow \left[\partial_\mu + ig A_\mu \begin{pmatrix} w_1 & w_2 & w_3 \end{pmatrix} \right] \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix} \]

U(1) theory with effective coupling \(\omega_c g \)
Abelianization of color fields

\[F_{\mu\nu}^a(x) = F_{\mu\nu}(x)n^a \quad A_\mu^a(x) = A_\mu(x)n^a \]

constant vector in color space

Diagonalize \(n^a T^a \)

\[D_\mu \psi = \left[\partial_\mu + igA_\mu n^a T^a \right] \psi \rightarrow \left[\partial_\mu + igA_\mu \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \right] \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix} \]

U(1) theory with effective coupling \(w_c g \)

- An important difference between SU(2) and SU(3)

SU(2) is rank 1: \(U^\dagger n^a T^a U = T^3 \)

SU(3) is rank 2: \(U^\dagger n^a T^a U = T^3 \cos \theta - T^8 \sin \theta \)

color direction parameter
Abelianization of SU(3) fields

\[U^\dagger n^a T^a U = T^3 \cos \theta - T^8 \sin \theta = \frac{1}{\sqrt{3}} \begin{pmatrix} \cos(\theta + \frac{\pi}{6}) \\ \cos(\theta + \frac{5\pi}{6}) \\ \sin \theta \end{pmatrix} \]

Relation between \(\theta \) and \(n^a \)

\[\sin^2 3\theta = 3(d^{abc} n^a n^b n^c)^2 \]

gauge invariant quantity (Casimir invariant) characterizing the color direction

The color direction can be parametrized in a gauge-invariant way.

Physical observables can depend on it.
Quark production in SU(2) uniform electric fields

\[D_\mu \psi = [\partial_\mu + igA_\mu n^a T^a] \psi \rightarrow \left[\partial_\mu + igA_\mu \left(\begin{array}{cc} 1/2 \\ -1/2 \end{array} \right) \right] \left(\begin{array}{c} \psi_1 \\ \psi_2 \end{array} \right) \]

The diagonalized effective couplings are always 1/2 and -1/2.

Uniform and constant electric field \(E^\alpha_z = E_0 n^a \)

strong field classical limit \(gE_0 = \text{const}, g \to 0 \)
no gauge field fluctuations
no backreaction

The distribution functions of produced quarks

The distributions of anti-particle is given by \(p \leftrightarrow -p \)
Quark production in SU(2) uniform electric fields

\[D_\mu \psi = \left[\partial_\mu + igA_\mu n^a T^a \right] \psi \rightarrow \left[\partial_\mu + igA_\mu \begin{pmatrix} 1/2 \\ -1/2 \end{pmatrix} \right] \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \]

The diagonalized effective couplings are always 1/2 and -1/2.

Uniform and constant electric field \(E^a_z = E_0 n^a \)

strong field classical limit \(gE_0 = \text{const}, \ g \rightarrow 0 \) no gauge field fluctuations no backreaction

The distributions of anti-particle is given by \(p \leftrightarrow -p \)
Cancellation of EM current in SU(2) fields

The contributions from color 1 and 2 are cancelled out.

\[J_z^{\text{EM}} \simeq 4e_f \sum_c \int \frac{d^3p}{(2\pi)^3} \frac{p_z}{\omega_p} f_c(t, p) \]

In the case of the Schwinger mechanism,

\[f_c(t, p) \simeq e^{-\pi \frac{m^2 + p_z^2}{|w_0E|}} \theta(0 < p_z < w_0E) \]
Quark production in SU(3) uniform electric fields

Uniform and constant electric field $E_z^a = E_0 n^a$

$\theta = 0^\circ$

$\theta = 30^\circ$

The distribution functions of produced quarks

N.T. (2010)
Non-cancellation of EM current in SU(3) fields

\[J_z^{EM} / \left(e \left(gE_0 \right)^{3/2} \right) \]

\[J_z^{EM} \sim \frac{4e_\gamma}{(2\pi)^3} \sum_c w_c |w_c| e^{-\frac{\pi m^2}{\left| w_c \right| gE_0}} \left(gE_0 \right)^2 t \]
Inhomogeneous color electric fields: SU(2)

initial energy density of gauge field
uniform in z
randomly distributed in the transverse plane
a scale Q

a snapshot of the EM current

time-evolution of space-averaged energy density
Inhomogeneous color electric fields: \textbf{SU}(3)

initial energy density of gauge field
uniform in z
randomly distributed in the transverse plane
a scale \(Q\)

\[
|J_z^{\text{EM}}|/(eQ^3)
\]

a snapshot of the EM current

time-evolution of space-averaged energy density
Summary and Outlook

- Investigated EM currents induced by color fields as a first step to study photon production in glasma.
- In SU(2) uniform fields, EM currents are not at all induced because of the cancellation between two color components.
- In SU(3) uniform fields, the cancellation is not perfect. The EM currents exist depending on the color direction of the background field.
- In inhomogeneous color fields, SU(2) and SU(3) give quantitatively different results.

- Quark production in glasma
- Effects of gauge field fluctuations and backreaction
- Photon production