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Motivations

Standard Model of particle physics extremely successful
we know is incomplete: neutrino masses, dark matter, etc..

Search for new physics at energy and intensity frontiers
muon anomaly: hadronic vacuum polarization and light-by-light

e.g. γ → π+π−, π0 → γγ

flavor physics, e.g. CP violation in strange and charm decays
e.g. study ε′/ε from K → ππ

Study of hadronic amplitudes very important
Reliable non-perturbative predictions from QCD (and SM)

→ Lattice QCD
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Textbook amplitudes

Infinite volume, Minkowski, 0→ 2 process

Gc(q1, q2) =
∫
d4x1 d

4x2 e
−iq1·x1−iq2·x2 〈0|T

{
φ(x1)φ(x2)J(0)

}
|0〉c

Gc has a pole 1
q2
1 −m2 − iε

1
q2
2 −m2 − iε

residue (= q1, q2 on-shell) is connected amplitude
form factor F = 〈q1, q2, out|J(0)|0〉
this is the standard LSZ theorem
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Revisiting LSZ - I

F (q1, q2) =
∫
d3x2 e

−iq2·x2

∫
dx0

2 e
−iq0

2x
0
2 θ(x0

2)〈q1|φ(x2)J(0)|0〉c

Using φp(x0) =
∫
d3xe−ip·xφ(x) and φp(x0) = eiĤx

0
φp(0)e−iĤx0

Complete set of (out) states
∑
n

∫
dΦn|p1, . . .pn, out〉〈p1, . . .pn, out|

F (q1, q2) =
∑
n

∫
dΦn

∫
dx0

2 e
−i(q0

2+E(q1)−En+iε)x0
2 θ(x0

2)

× 〈q1|φq2(0)|n〉〈n|J(0)|0〉c

Using the usual trick
∫
dEδ(En − E)

F (q1, q2) =
∫
dE
∫
dx0

2 e
−i(q0

2+E(q1)−E)x0
2 θ(x0

2) ρ(E)

ρ(E) is the underlying spectral function
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Revisiting LSZ - II

F (q1, q2) =
∫
d4x2e

−iq2x2θ(x0
2) 〈q1|φq2(0)J(0)|0〉

=
∫
dE
π

i

q0
2 + E(q1)− E + iε

ρ(E)

=
√
Z

2E(q2)
F(q1, q2)

q0
2 − E(q2) + iε

+ · · ·

what are the . . . ? off-shell unphysical terms (regular)
the limit q2

2 → m2 kills them, leaving physical F
Take home message:

integral spectral function at on-shell kinematics ↔ physical amplitude
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Lattice field theories

Due to confinment → non-perturbative formulation is necessary

lattice spacing a → regulate UV divergences
finite size L → infrared regulator

Continuum theory a→ 0, L→∞

Euclidean metric → Boltzman interpretation
of path integral }a

L

〈O〉 = Z−1
∫

[DU ]e−S[U ]O(U) ≈ 1
N

N∑
i=1

O[Ui]

Very high dimensional integral → Monte-Carlo methods
Markov Chain of gauge field configs U0 → U1 → · · · → UN
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Spectral decomposition
EM current Jµ, projected to momentum p

two-point function → hadronic vacuum polarization and R-ratio

〈Jµ(t,p)Jµ(0,p)〉 =
∑
n

|〈0|Jµ(0)|n,p〉|2e−Ent∫
dω e−ωt

∑
n

δ(ω − En)|〈0|Jµ(0)|n,p〉|2︸ ︷︷ ︸
=ρ(ω)

0 500 1000 1500
ω [MeV]

δ(ω − 5Mπ,∆ = Mπ)

ρ(ω)

matrix elements 1/Lk finite vol. effects
but 〈JµJµ〉 errors of O(e−MπL)
smeared δ → smeared ρ FV O(e−∆L)
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Inverse problem - I
Understanding the role of Euclidean metric

we assume large (infinite) spatial volume
goal is predicting physical time-like amplitudes

Minkowski
ρi(ω) time-like cross sections

250 500 750 1000 1250 1500
ω [MeV]

0.0

0.1

0.2

0.3

0.4

0.5 ρ1(ω)

ρ2(ω)

Euclidean
Gi(t) =

∫
dω e−ω|t|ρi(ω)

0.000 0.002 0.004 0.006 0.008

t [MeV−1]

100

101

102 G1(t)

G2(t)

Euclidean → Minkowski requires solution inverse Laplace
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Inverse problem - II

∫
dt eω0tG(t) =

∫
dω

=δ(ω0−ω)︷ ︸︸ ︷∫
dte(ω0−ω)tρ(ω) = ρ(ω0)

Lattice QCD 1. finite (discrete) subset of points
2. statistical (and syst.) errors = inverse Laplace

numerically ill-defined

0.000 0.002 0.004 0.006 0.008

t [MeV−1]

100

101

102 G1(t)

G2(t)

0.0000 0.0005 0.0010 0.0015 0.0020

t [MeV−1]

25

50

75

100

125

extremely hard problem:
long-distance growing statistical noise (exponential)
short-distance large discretization errors
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Inverse problem - III
Approx. numerical solutions [Backus, Gilbert ’68][Hansen, Lupo, Tantalo ’19]∑

t ct〈Jµ(t)Jµ(0)〉 ≈
∑
n |〈0|Jµ|n〉|2δ(En − ω,∆)

coefficients ct numerically obtained for each ω,∆
highly oscillatory → regulate with cov. matrix or large ∆ 4
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FIG. 1: Smearing functions �BG(E?, E) obtained by apply-
ing the Backus–Gilbert procedure in the absence of statistical
errors with E? = 0.5 and b1(t, E) as basis functions. The dif-
ferent panels correspond to di↵erent values of tmax. As it can
be seen the function �BG(E?, E) gets more similar to a Dirac
�–function for increasing values of tmax.
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FIG. 2: Values of the coe�cients gt(E?) corresponding to
the smearing function �BG(E?, E) shown in the right–panel
of Figure 1, i.e. the coe�cients obtained by applying the
Backus–Gilbert procedure in the absence of statistical errors
with E? = 0.5, b1(t, E) as basis functions and tmax = 30. A
typical pattern for these coe�cients is that they change sign
and for some values of t they have extremely large absolute
values (the scale on the y–axis varies between ±1021).

when increasing the number of basis functions used in its
definition.

In Figure 2 we show the coe�cients gt(E?) correspond-
ing to the smearing function �BG(E?, E) shown in the
right–panel of Figure 1. The plot has been shown in
order to highlight a typical feature exhibited by these co-
e�cients. As a consequence of the nearly singular nature
of the matrix A(E?) the coe�cients become gigantic for
some values of t and, moreover, oscillate in sign. Hav-
ing noticed this feature we can now discuss the Backus–
Gilbert procedure in the presence of uncertainties.

The exact correlator is an idealization that is not ac-

cessible in the real world and, in the presence of (exper-
imental or) statistical errors, we have to consider

Ci(t) = C̄(t) + �Ci(t) , i = 0, . . . , N � 1 (18)

where the index i runs over the N di↵erent statistical
samples (for a lattice correlator we can think to the dif-
ferent bootstrap or jackknife bins), C̄(t) is the statistical
average and �Ci(t) is the deviation from the average of

the i-th bin,
PN�1

i=0 �Ci(t) = 0.

Given the fact that the coe�cients gt(E?) are huge
numbers, even a tiny deviation (for example an appar-
ently harmless rounding error) from the average gives an
unacceptably large contribution to the smeared spectral
function. Indeed, by applying Eq. (12) to Ci(t), one gets
that the sums

P
t gt(E?) �Ci(t) are also huge numbers

in general and the final error on the estimated smeared
spectral functions turns out to be unacceptably large.
This can be viewed as a manifestation of the fact that we
are dealing with a numerically ill–posed problem.

In order to keep statistical errors under control Backus
and Gilbert considered another functional of the coe�-
cients, a measure of the statistical error on the smeared
spectral function, namely

B[g] = gT Cov g , (19)

where Cov is the covariance matrix of the correlator,

Covtr =
1

N � 1

N�1X

i=0

�Ci(t + 1)�Ci(r + 1) . (20)

In the presence of statistical errors, the coe�cients are
fixed by minimizing the following functional

W [�, g] = (1 � �)ABG[g] + �B[g] , (21)

again under the unit area constraint of Eq. (14). In this
case the solution is given by

g(�, E?) =
W�1(�, E?) R

RT W�1(�, E?) R
, (22)

where the matrix W(�, E?) has elements

Wtr(�, E?) = (1 � �)Atr(E?) + � Covtr (23)

with Atr(E?) already defined in Eq. (17). The real num-
ber � is a free parameter of the algorithm, chosen in the
range [0, 1].

The functional W [�, g] is in fact a convex linear combi-
nation of the deterministic functional ABG[g] and of the
error functional B[g]. The presence of the error func-
tional in the minimization procedure forbids solutions
corresponding to gigantic values of the coe�cients. Sta-
tistical errors are thus kept under control at the price
of accepting that the shape of the smearing function is
determined (somehow optimized) also by the statistical
errors.
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the smearing function �BG(E?, E) shown in the right–panel
of Figure 1, i.e. the coe�cients obtained by applying the
Backus–Gilbert procedure in the absence of statistical errors
with E? = 0.5, b1(t, E) as basis functions and tmax = 30. A
typical pattern for these coe�cients is that they change sign
and for some values of t they have extremely large absolute
values (the scale on the y–axis varies between ±1021).

when increasing the number of basis functions used in its
definition.

In Figure 2 we show the coe�cients gt(E?) correspond-
ing to the smearing function �BG(E?, E) shown in the
right–panel of Figure 1. The plot has been shown in
order to highlight a typical feature exhibited by these co-
e�cients. As a consequence of the nearly singular nature
of the matrix A(E?) the coe�cients become gigantic for
some values of t and, moreover, oscillate in sign. Hav-
ing noticed this feature we can now discuss the Backus–
Gilbert procedure in the presence of uncertainties.

The exact correlator is an idealization that is not ac-

cessible in the real world and, in the presence of (exper-
imental or) statistical errors, we have to consider

Ci(t) = C̄(t) + �Ci(t) , i = 0, . . . , N � 1 (18)

where the index i runs over the N di↵erent statistical
samples (for a lattice correlator we can think to the dif-
ferent bootstrap or jackknife bins), C̄(t) is the statistical
average and �Ci(t) is the deviation from the average of

the i-th bin,
PN�1

i=0 �Ci(t) = 0.

Given the fact that the coe�cients gt(E?) are huge
numbers, even a tiny deviation (for example an appar-
ently harmless rounding error) from the average gives an
unacceptably large contribution to the smeared spectral
function. Indeed, by applying Eq. (12) to Ci(t), one gets
that the sums

P
t gt(E?) �Ci(t) are also huge numbers

in general and the final error on the estimated smeared
spectral functions turns out to be unacceptably large.
This can be viewed as a manifestation of the fact that we
are dealing with a numerically ill–posed problem.

In order to keep statistical errors under control Backus
and Gilbert considered another functional of the coe�-
cients, a measure of the statistical error on the smeared
spectral function, namely

B[g] = gT Cov g , (19)

where Cov is the covariance matrix of the correlator,

Covtr =
1

N � 1

N�1X

i=0

�Ci(t + 1)�Ci(r + 1) . (20)

In the presence of statistical errors, the coe�cients are
fixed by minimizing the following functional

W [�, g] = (1 � �)ABG[g] + �B[g] , (21)

again under the unit area constraint of Eq. (14). In this
case the solution is given by

g(�, E?) =
W�1(�, E?) R

RT W�1(�, E?) R
, (22)

where the matrix W(�, E?) has elements

Wtr(�, E?) = (1 � �)Atr(E?) + � Covtr (23)

with Atr(E?) already defined in Eq. (17). The real num-
ber � is a free parameter of the algorithm, chosen in the
range [0, 1].

The functional W [�, g] is in fact a convex linear combi-
nation of the deterministic functional ABG[g] and of the
error functional B[g]. The presence of the error func-
tional in the minimization procedure forbids solutions
corresponding to gigantic values of the coe�cients. Sta-
tistical errors are thus kept under control at the price
of accepting that the shape of the smearing function is
determined (somehow optimized) also by the statistical
errors.

Large oscillations → large statistical errors
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Inverse problem - Recap

Numerical methods to approximate smeared ρ(ω) from G(t)

0 500 1000 1500
ω [MeV]

δ(ω − 5Mπ,∆ = Mπ)

ρ(ω) ∆ large for finite vol. errors
stable reconstruction
smaller stat. errors

∆→ 0 for physics
unstable reconstruction
large stat. errors

Current available lattices
∆ ≈ mπ, preventing extraction ρ(770) resonance
ordered L→∞,∆→ 0 still very challenging
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The problem
“It is of considerable interest to identify the

physical quantities, if any, which can be extracted
directly from euclidean correlation functions,

avoiding analytic continuation” [Maiani, Testa ’90]
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Maiani-Testa - I
Goal: the form factor 〈π(−q)π(q)out|Ĵ |0〉 for q 6= 0

J scalar current

Starting point: euclidean correlator 〈π̃q1(t1)π̃q2(t2)J(0)〉
π̃q pion interpolating operator projected to q

ωqi =
√
M2
π + q2

i pion energy

0. Limit of large t1

〈π̃q1(t1)π̃q2(t2)J(0)〉 t1→∞'
[2ωq1 ]−1

√
Zπe

−ωq1 t1 〈π, q1|π̃q2(t2) J(0)|0〉︸ ︷︷ ︸
1. Use physical Hamiltonian Ĥ to remove t2 dependence
eωq2 t2 × 〈π, q1|π̃q2(t2) J(0)|0〉 =

〈π, q1|e+Ĥt2 π̃q2(0) e−Ĥt2 × eωq2 t2 J(0)|0〉

2. set q1 = −q2 = q → 〈π, q|π̃−q(0) e−(Ĥ−2ωq)t2 J(0)|0〉
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Maiani-Testa - II

〈π, q|π̃−q(0) e−(Ĥ−2ωq)t2 J(0)|0〉

1. insert complete set of (out) states
〈π, q|π̃−q(0) e−(E−2ωq)t2

∑
n

∫
dΦn|n, out〉〈n, out|J(0)|0〉

dΦn: n-particle phase space
π̃−q

πq

n, out × e−(E−2ωq)t2 × n, out J

Fn = 〈n, out|J(0)|0〉: time-like 1→ n-particles form factor
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Maiani-Testa - II

〈π, q|π̃−q(0)|n, out〉 = not the 2→ n scattering amplitude!

2. identify off-shell contributions in 〈π, q|π̃−q(0)|n, out〉
π̃−q

πq

n, out =

πq πq

π̃−q π̃−q

+ + + . . .

= discon× δ2n +
√
Zπ

η+iεM
∗
22(η) +

√
Zπ

η+iεM
∗
24(η) + . . .

π̃−q → pole at η = q2 −M2
π = E(E − 2ωq) (virtuality)

black blobs = off-shell scattering matrix M2n(η)
limη→0 M2n(η) =M2n on-shell 2→ n scattering matrix

Bottom line: q fixed, hence energy E is our knob
for finding unique on-shell point η = 0!
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Maiani-Testa - III
Key points: in any given channel n, out

1. unique physical point in energy E
2. phase integral → integral over energy, E ∈ [2Mπ,∞)
3. enhancement at E = 2Mπ from e−(E−2ωq)t2

Conclusion:
we can not extract physical
amplitude!

contamination from off-shell physics
→ π̃ dependence

0 2 4 6 8 10
E/Mπ

0.0

0.5

1.0

1.5

2.0

2ωq = 5Mπ

We can solve the problem by considering q = 0 [Maiani, Testa ’90]
points 1. and 2. still valid, but
enhancement at E = 2Mπ corresponds to physical point
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Maiani-Testa - IV
Final key concept: use time-dependence to focus integral at E = 2Mπ

e−(E−2Mπ)t2 like “half-δ”

localization at E = 2Mπ

expansion about large t2
→ amplitude at threshold

→ scattering length a

Mπ
0

1
t2Mπ = 1

t2Mπ = 2

t2Mπ = 3

t2Mπ = 4

t2Mπ = 5

sketch derivation:

t2

∫ ∞
0

dye−yt2G(y) =
∫ ∞

0
dxe−xG(x/t2) =

∑
n

gn

∫
dx
e−xxn

tn2

g0 = G(y = 0): how Maiani-Testa getM2n = M2n(η = 0)
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Maiani-Testa - Final

Conclusion: physical scattering only at q = 0 [Maiani, Testa ’90]

〈π,0|π̃0(t2)J(0)|0〉 t2>0→ F2(4M2
π)
[
1 + a

√
Mπ

πt2
+O(t−3/2

2 )
]

at threshold: F2+scatt.length a
No-go theorem for q 6= 0

Maiani-Testa: at threshold there is no inverse problem!
analytic control over inverse problem thanks to t2!

t2∆E � 1, with ∆E level spacing

What about K → ππ?
final two pions relative non-zero momentum

→ Maiani-Testa say can not use lattice (euclidean) correlators
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Intermezzo - Finite volume

QCD in a box [Lüscher ’85, ’86]
spectrum distorted by finite volume
use distorsion to extract interactions → amplitudes

Also matrix elements distorted by finite volume
well-defined mapping to infinite volume [Lellouch-Lüscher ’01]

Main limitation: 1→ 2 , 2→ 2
3-particle quantization completed [Hansen, Sharpe ’19]

4-particles? generalization of formalism? [Blanton, Sharpe ’20]
at phys. pions we cannot (yet) reach the ρ mass!

With our work we hope to:
extract 1, 2→ 2 beyond 4-particle threshold
generalize to n particles in final states
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Intermezzo - ε′/ε

+ G-parity boundary conditions
lowest 2π state has relative non-zero momentum

+ Domain-wall formulation, retains good chiral symmetry
Nf = 2 + 1 ensemble with physical masses
full operator basis, including QCD and EW penguins

+ Large operator basis
GEVP analysis to control excited states
scattering phase at MK in agreement with dispersive prediction

= Most precise prediction of CP violation in K → ππ from LQCD
[RBC/UKQCD, MB et al. ’20]

Re(ε′/ε) = 0.00217(26)stat.(62)syst.(50)iso.breaking
[experiment]

Re(ε′/ε) = 0.00166(23)
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Our proposal
〈π, q1|π̃q2(0) e−(Ĥ−2ωq)t2 J(0)|0〉 [Maiani-Testa ’90]

〈π, q1|π̃q2(0) Θ(Ĥ − 2ωq,∆)e−(Ĥ−2ωq)t2 J(0)|0〉 [Bruno-Hansen, ’20]

smooth Θ, smearing width ∆
tames growing exponentials in 2Mπ < E < 2ωq

combination of Θ and exponential → localization in energy ω
like Maiani and Testa we want analytic control by expanding t2
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Generalized Maiani-Testa - I

〈π,0|π̃0(0)e−(Ĥ−2ω0)t2J(0)|0〉 [Maiani-Testa ’90]
t2>0→ F2(4M2

π)
[
1 + a

√
Mπ

πt2
+O(t−3/2

2 )
]

〈π, q|π̃−qΘ(Ĥ − 2ωq,∆)e−(Ĥ−2ωq)t2J(0)|0〉 [Bruno-Hansen ’20]

→ Re [F2(4ω2
q)] +

∑
n=0 gnJ (n)(t2, ωq,∆)

Generalization of Maiani-Testa work
J (n) pure analytic functions

we have full control over large t2 expansion
unitarity relations imply g0 ' Im [F2]

2iIm [F2] = disc[F2] = 2πi
∑
n

∫
dΦnM∗2nFnδ(2ωq −

∑
i

ωpi)

we go beyond the two-pion intermediate channel
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Generalized Maiani-Testa - II
N〈π, q|π̃−qΘ(Ĥ −

√
s,∆)e−(Ĥ−2ωq)t2J(0)|0〉 [Bruno-Hansen ’20]

= e−
√
m2
π+q2t2

[
Θ(0,∆)Re [F2(s)]− 2Im [F2(s)]J (0)(t2, s,∆) + · · ·

]
J (n) pure analytic functions

0.25 0.50 0.75 1.00 1.25 1.50
tMπ

10−4

10−3

10−2

10−1

100

J
(n

)

n = 0

n = 1

n = 2

n = 3

ωq = 420,mπ = ∆ = 140 [MeV]

large hierarchy → hope for reliable extraction of Re [F2] and Im [F2]
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Generalized Maiani-Testa - III

Threshold: take q = 0

〈π,0|π̃0(0)e−(Ĥ−2ω0)t2J(0)|0〉 [Bruno, Hansen ’20]

→ F2
(
4M2

π

)[
1− 32πMπa√

2Mπt2
I(0)(2Mπt2)− g1I(1)(2Mπt2)√

2Mπt2
+O

(
I(2))]

1 2 3 4 5 6
b

10−3

10−2

10−1

100

101

32
π

2
I(
n

) (b
)

n = 0

n = 1

n = 2

n = 3

large t2 reproduce
Maiani-Testa result

go beyond with full integrals
I(n)

improved hierarchy
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Inverse problem

2Mπ
0

t2Mπ = 0.5

t2Mπ = 1.0

t2Mπ = 1.5

2Mπ 2ωq
0

∆ =
Mπ

2

2Mπ 2ωq
0

∆ = Mπ

[Maiani-Testa ’90]
〈π, q1|π̃q2(0) e−(Ĥ−2ωq)t2 J(0)|0〉

physical scattering at q1 = q2 = 0
exponentials mimick “half” δ(E − 2Mπ)

[Bulava-Hansen ’18]
〈π, q1|π̃q2(0) δ(Ĥ − 2ωq,∆) J(0)|0〉

physical scattering at E = 2ωq

ordered double-limit lim∆→0 limV→∞

[Bruno-Hansen ’20]
〈π, q1|π̃q2(0) Θ(Ĥ − 2ωq,∆)e−(Ĥ−2ωq)t2 J(0)|0〉

physical scattering at pole E = 2ωq

physical scattering at fixed ∆
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Practical implementations

Finite but large volume, say MπL ' 5

1. exact reconstruction
large basis of operators → GEVP

O(30) energy levels possible [HadSpec]
ππ I = 1, P-wave, in context of (g − 2)µ

4/5 levels at physical pions [MB, Izubuchi, Meyer, Lehner ’18]

2. approx. reconstruction
Backus-Gilbert the Θ is possible [Hansen-Lupo-Tantalo ’19]
less severe inverse problem than δ
likely more suited for higher-energies
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Finite Volume errors

〈π, q1|π̃q2(0)Θ(Ĥ − 2ωq,∆)e−(Ĥ−2ωq)t2J(0)|0〉 =
∫
dωK(ω, t2)ρL(ω)

Spectral-function ρL(ω) =
∑
n δ(ω − En)cn

2Mπ 2ωq
0

∆ = 0.5, t2 = 0.5

∆ = 1.0, t2 = 0.5

∆ = 1.0, t2 = 1.5

∆ ≈Mπ we expect
O(e−MπL) FV errors

Large t2 ' narrow δ-function

Maiani-Testa: t2∆E � 1, ∆E level spacing
window in t2 where method O(e−MπL)
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Conclusions
Generalization of the Maiani-Testa result [Bruno-Hansen ’20]

away from threshold
time-like form factor (real and imaginary)
resummed all intermediate channels
understood the connection with the inverse problem
extension to 2→ 2 processes

novel method to extract Nπ scattering length

Next steps
1. numerical tests
2. improve understanding of FV errors
3. extend to neutral meson oscillations, QED semileptonic etc..

Thanks for your attention
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More Maiani-Testa

〈π, q|π̃−q(0)|n, out〉 = discon× δ2n +
√
ZπM∗

2n(η)[η + iε]−1

1. disconnected part isolates F2, complex?

Z
−1/2
π [2ωq]〈π, q|π̃−q(0)e−(Ĥ−2ωq)t2J(0)|0〉 =

F2[4ω2
q] + 2ωq

1
2
∑
n

∫
dΦn

e−(E−2ωq)t2

η + iε
M∗

2n(η)Fn

2. Maiani and Testa clever observation: separate the absorptive part
2ωq

1
2
∑
n

∫
dΦn(−2πi)δ(η)e−(E−2ωq)t2M∗

2nFn = −iIm [F2]

3. F2 − iIm [F2] = Re [F2]→ real X, time-like X

Let’s turn to principal value part P 1
η



More Maiani-Testa

2ωq
1
2
∑
n

∫
dΦnP

1
η
e−(E−2ωq)t2M∗

2nFn [η(E) = E(E − 2ωq)]

a. integration E ∈ [2Mπ,∞)
b. M on-shell only at pole

→
for large t2,
E ≈ 2Mπ

dominates integral



Visual inspection

restrict to n = 2π
dΦ2 → dE

√
E2/4−M2

π∫
dΦ2 P

1
η
e−(E−2ωq)t2M∗

2nFn

2Mπ 2ωq

0

1

e−(E−2ωq)t2

1/η

2Mπ = 2ωq

0

1

Maiani− Testa

√
E/4−M2

π

M on− shell

phase space dΦ2

M on shell only at pole
principal value pole 1/η
exponentials


