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Qu ≠ Qd : O(αem) ≈ 1/100

mu ≠ md : O[(md-mu)/ΛQCD] ≈ 1/100

“Electromagnetic”

“Strong”

Isospin-breaking effects are induced by:

Since electromagnetic interactions renormalize quark masses the 
two corrections are intrinsically related

Isospin symmetry is an almost exact property 
of the strong interactions

Though small, IB effects play often a very important role
(quark masses, Mn - Mp, leptonic decay constants, vector form factor)

ISOSPIN-BREAKING EFFECTS
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Phenomenological 
motivations



The determination of some hadronic 

observables in flavor physics has reached such 

an accurate degree of experimental 

and theoretical precision that

electromagnetic and strong isospin-breaking

   effects cannot be neglected

      anymore

Phenomenological motivations
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The relevant processes are 
leptonic and semileptonic 

K and π decays

The determination of  Vus and  Vud 
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Vus and  Vud: experimental results 

K/π

K π

Vus
Vud

fK
fπ
= 0.2760(4) Vus f+

K 0π− (0) = 0.21654(41)

PDG M. Moulson, arXiv:1704.04104
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fK
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= 0.27599 38( )
< 0.2%

Vus f+ 0( ) = 0.21654 41( )



Vus and  Vud: results from lattice QCD 

fK± / fπ± = 1.1932(19)    Nf=2+1+1 

fK± / fπ± = 1.1917(37)    Nf=2+1

0.2%

f+(0) = 0.9706(27)    Nf=2+1+1 

f+(0) = 0.9677(27)    Nf=2+1

0.3%
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f
K ±

fπ ±

= fK
fπ

1+δ SU 2( )
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Given the present exper. and theor. (LQCD) accuracy,  an important source of 
uncertainty are long distance electromagnetic and SU(2)-breaking corrections

ChPT is not applicable to D and B decays

M.Knecht et al., 2000;   V.Cirigliano and H.Neufeld, 2011

δEM = −  0.0069  (17)

At leading order in ChPT both δEM and δSU(2) can be expressed in 
terms of physical quantities (e.m. pion mass splitting, fK/fπ, …)

25% of error due to higher orders       0.2% on ΓKl2/Γπl2 

For ΓKl2/Γπl2

J.Gasser and H.Leutwyler, 1985;   V.Cirigliano and H.Neufeld, 2011

25% of error due to higher orders           
       0.1% on ΓKl2/Γπl2 

Electromagnetic and isospin-breaking effects

K/π

K π
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Given the present exper. and theor. (LQCD) accuracy,  an important source of 
uncertainty are long distance electromagnetic and SU(2)-breaking corrections

Electromagnetic and isospin-breaking effects
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Isospin-breaking 
effects on the lattice 

RM123 method



A strategy for Lattice QCD: 
The isospin-breaking part of the Lagrangian 

is treated as a perturbation  

   Expand in:

arXiv:1110.6294

+

arXiv:1303.4896

RM123 Collaboration

αemmd – mu
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  - Identify the isospin-breaking term in the QCD action

  

Sm = muuu +mddd⎡⎣ ⎤⎦
x
∑ =

1
2

mu +md( ) uu + dd( )− 1
2

md −mu( ) uu − dd( )⎡

⎣
⎢

⎤

⎦
⎥

x
∑ =

    = mud uu + dd( )− Δm uu − dd( )⎡⎣ ⎤⎦
x
∑ = S0 − Δm Ŝ

- Expand the functional integral in powers of Δm

   
O =

Dφ  O e−S0+Δm Ŝ∫
Dφ   e−S0+Δm Ŝ∫

1st

!
Dφ  O e−S0 1+ Δm Ŝ( )∫
Dφ   e−S0 1+ Δm Ŝ( )∫

!
O

0
+ Δm O Ŝ

0

1+ Δm Ŝ
0

= O
0
+ Δm O Ŝ

0

- At leading order in Δm the corrections only appear in the 
  valence-quark propagators:
(disconnected contractions of ūu and 
ƌd vanish due to isospin symmetry)

1 The (md-mu) expansion

Advantage: 
factorized out

12

Ŝ = Σx(ūu-ƌd)

for isospin symmetry



   
SQED = 1

2
Aν (x) −∇µ

−∇µ
+( )Aν (x)

x;µν
∑ =

( p.b.c.) 1
2

Aν
*(k) 2sin(kµ / 2)( )2 Aν (k)

k ;µν
∑

  - Non-compact QED: the dynamical variable is the gauge potential A�(x) 
    in a fixed covariant gauge (                 )

  
∇µ

− Aµ (x) = 0

- The photon propagator is IR divergent � subtract the zero momentum mode 

2 The QED expansion!

+ 

  - Full covariant derivatives are defined introducing QED and QCD links:

  
Aµ (x)→ Eµ (x) = e− iaeAµ ( x ) Dµ

+qf (x) = Eµ (x)⎡⎣ ⎤⎦
 ef Uµ (x) qf (x + µ̂)− qf (x)

QED QCD 
 - Since                                                                  the expansion leads to:

   
Eµ (x) = e− i  e  Aµ ( x ) = 1− i  e  Aµ (x)−1/ 2 e2

 Aµ
2(x)+…

+ counterterms 24 

2
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The QED expansion 
for the quark propagator

In the electro-quenched approximation: 
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All masses in MSbar at 2 GeV

The down- and up-quark mass difference

RM123 Collaboration, arXiv:1704.06561

md −mu = 2.38(18) MeV
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M2
K 0  - M2

K +⎡⎣ ⎤⎦
QCD

md −mu

= 2.51(18) GeV

QED

QCD

Δmud

QED

 
M

K+ − M
K0

⎡⎣ ⎤⎦
QCD

= −6.00(15) MeV

 
M

K+ − M
K0

⎡⎣ ⎤⎦
QED

= 2.07(15) MeV

and from the experimental value

mu = 2.50(17) MeV
md = 4.88(20) MeV

electro-quenched
approximation
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QED corrections to 
hadronic decays



QED corrections to hadronic decays

   In general the amplitudes are infrared divergent.
On the lattice, a natural infrared cutoff is provided by the 

finite volume. 
But a delicate procedure to remove it is needed. 

 A method to solve this problem is presented 

We consider the leptonic decay of 
a charged pseudoscalar meson, but the method is general 

(it can be used for semileptonic decays) 

N. Carrasco, V. Lubicz, G. Martinelli, C.T. Sachrajda, N. Tantalo, C. Tarantino, M. Testa 

PRD 91 (2015) 074506, arXiv:1502.00257 17



     The rate is:

In the absence of electromagnetism, the non-perturbative QCD effects are contained 
in a single number, the pseudoscalar decay constant

AP
0( ) ≡ 0 q2γ 4γ 5q1 P

0( ) = fP
0( )MP

0( )
K+

s

u

!+

ν!
K+

s

u

!+

ν!

Leptonic decays at tree level

Since the masses of the pion and kaon are much 
smaller than MW we use the effective Hamiltonian 

 This replacement is necessary in a lattice calculation, since  1/ a≪ MW

q1

q2

!+

ν!

W

q1

q2

!+

ν!

Heff =
GF

2
Vq1q2
* q2γ

µ 1− γ 5( )q1( ) ν ℓγ µ 1− γ 5( )ℓ( )
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Γ
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tree( ) P± → ℓ±ν ℓ( ) = GF
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2
M
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M
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2

In the presence of electromagnetism it is not even possible to give a physical 
definition of fP J. Gasser and G.R.S. Zarnauskas, PLB 693 (2010) 122



Leptonic decays at O(!): matching

When including the O(!) corrections, the UV contributions in the 

effective theory are different from those in the Standard Model:

A MATCHING BETWEEN THE TWO THEORIES IS REQUIRED

A. Sirlin, NPB 196 (1982) 83; E. Braaten and C.S. Li, PRD 42 (1990) 3888

Heff =
GF

2
Vq1q2
* 1+ α

π
ln MZ

MW

⎛
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⎞
⎠⎟

⎛

⎝⎜
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⎠⎟
q2γ

µ 1− γ 5( )q1( ) ν ℓγ µ 1− γ
5( )ℓ( )

W-regularization

This factor provides the matching between the SM and the local Fermi theory

1
k2

= 1
k2 −MW

2 + MW
2

MW
2 − k2

1
k2

The W-regularization cannot be implemented directly in 
lattice simulations since: 1 a≪MW
The lattice 4-fermion operator is renormalized in RI’-MOM and then perturbatively 
matched to the one in the W-regularization

p

p

p

p

k

O1
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⎭⎪
O1
RI' µ( )

CW-RI' = −5.7825 19



O1
RI' µ( ) = ZO( )1i aµ( )Oi

bare a( )
i=1

5

∑

For Wilson and Twisted-Mass fermions

RI’-MOM in QCD+QED

ZΓO
aµ( )ΓO ap( )

p2=µ2
= 1̂

δZO = −ZΓO
0( )δΓO +

1
2
δZq1

+δZq2
+δZℓ( )

27

�Zij(µa,↵s(1/a)) have been calculated in perturbation theory at first order in ↵em and at order

↵0
s for Wilson fermions in Ref. [8]. In the following we will describe a completely non-perturbative

determination of the matrix �Z1j , including both QED to first order in ↵em and QCD to all orders,

by using the RI'-MOM method for the twisted-mass regularization of QCD at maximal twist. With

appropriate modifications to the kinematical conditions and projectors used, the discussion can be

easily adapted to similar schemes, such as SMOM.

In addition to the renormalisation of the four fermion operator appearing in the Hamiltonian,

the e.m. shift of the quark masses (see section IIIA), requires the knowledge of the renormalisation

constant of the pseudoscalar density [3]. For this reason in the following we will discuss first the

non-perturbative renormalisation of quark bilinear operators.

A. Quark field and bilinear vertices renormalization

As far as the renormalisation of fields and of bilinear or four-fermion operators (in general of

any composite operator) is concerned, we can always define the following decomposition

Z = ZQCD +
↵em

4⇡
�Z = ZQCD

⇣
1 +

↵em

4⇡
�Z

⌘
. (86)

In the case of the four-fermion operators (80) the quantities Z, ZQCD, �Z and �Z are matrices.

Let us start from the renormalisation of the quark fields. From the e.m. corrections to the quark

propagator

↵em

4⇡
SQCD
q (p)�Sq(p)S

QCD
q (p) =

+ � [mf �m0
f ] ⌥ [mcr

f �mcr
0 ] , (87)

where we have included explicitly the mass and critical Wilson parameter counter-terms [3], one

can derive the one-particle irreducible two-point vertex

⌃q(p) = �hSQCD
q (p)i�1 hSQCD

q (p)�Sq(p)S
QCD
q (p)i hSQCD(p)i�1 . (88)

From the above equation it is straightforward to find the correction to the quark field renor-

malisation constant in the RI'-MOM scheme

�Zq = Z(1)
q =

Tr [ 6p⌃q(p)]

Tr
h
6p hSQCD

q (p)i�1
i . (89)

The weak 4-fermion operator is renormalized non-perturbatively on the lattice to 
all orders in !s and up to first order in ! by imposing the RI’-MOM condition:

ZO = 1̂+ α
4π

δZO
⎛
⎝⎜

⎞
⎠⎟ ZO

0( )By decomposing the RCs as                             , it follows:

ΓO = Tr ΛOPO[ ]
ZΓO

= ZO Z f
−1 2

f
∏

δS
20



 At O(α), Γ0 contains infrared divergences. One has to consider:

F. Bloch and A. Nordsieck,  

PR 52 (1937) 54
with 0 ≤ Eγ ≤ ΔE . The sum is infrared finite

... + ...

Γ0 Γ1 ΔE( )

K+

s

u

!+

ν!

K+

s

u

!+

ν!

K+

s

u

!+

ν!

Γ Pℓ2
±( ) = Γ P± → ℓ±ν ℓ( )+ Γ P± → ℓ±ν ℓγ ΔE( )( ) ≡ Γ0 + Γ1 ΔE( )

 Leptonic decays at O(α): the IR problem

Both Γ0 and Γ1(ΔE) can be evaluated in a fully non-perturbative 
way in lattice simulations. 
However, as a first approach to the the problem, we have considered a 
different strategy, applicable to both pion and kaon decays 21



The strategy

 ΔE ∼O(20 MeV)

F. Ambrosino et al., KLOE Collaboration, PLB 
632 (2006) 76; EPJC 64 (2009) 627; 65 (2010) 
703(E)

A cut-off                                   appears to be appropriate, both   
 experimentally and theoretically

 ΔE≪ ΛQCD

J. Bijnens et al., NPB 396 (1993) 81;  V.Cirigliano 
and I.Rosell, JHEP 0710 (2007) 005 

22

K+

s

u

!+

ν!

P+

At first we considered sufficiently soft photons (i.e. they do not resolve 
the internal structure of the pion (kaon)), so that the pointlike 

approximation can be used to compute Γ1(ΔE) in perturbation theory,  

but hard with respect to the experimental resolution



Γ Pℓ2
±( ) = Γ0 − Γ0

pt( )+ Γ0
pt + Γ1

pt ΔE( )( )

In order to ensure the cancellation of IR divergences with good 
numerical precision, we rewrite:

 ΔE ∼O(20 MeV)Γ ΔE( )= Γ0 + Γ 1

pt ΔE( )

Montecarlo simulation 
Lattice QCD

Perturbation theory 
with pointlike pion

 
Γ0
pt = Γ π + → +ν( )pt

The strategy

23

Γ P± → ℓ±ν ℓ( ) Γ P± → ℓ±ν ℓγ ΔE( )( )

Γ Pℓ2
±( )

is an unphysical quantity

Γ Pℓ2
±( ) = Γ0 − Γ0

pt( )+ Γ0
pt + Γ1

pt ΔE( )( )



For π and K decays, the size of the neglected structure-dependent 
contributions can be estimated, as a function of ΔE, using ChPT at O(p4)

For B decays, due to the presence of the small scale,                                    , 
the radiation of a soft photon may still induce sizeable SD effects and a full 
non-perturbative calculation of real emission is likely necessary
D. Becirevic, B. Haas, E. Kou, PLB 681 (2009) 257

24

       Estimates of SD contributions to

H ν k, pπ( ) = εµ
* k( ) d 4x eikxT 0  ∫ jµ x( )JWν 0( )  π pπ( ) k2 = 0,  ε * ⋅ k = 0

Γ1 ΔE( )

expressed in terms of two hadronic form-factors FV,A

the structure dependent real contribution: �SD

R
(E)

RM123+SOTON, PRD 91 (2015)
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FIG. 12: Point-like (pt), structure-dependent (SD) and interference (INT) contributions to the

decay ⇡ � ���. The first (second) row corresponds to � = e (� = µ).

for a range of values of x� will prove to be very useful as a check of the range of validity

of the point-like approximation. As stressed in the main body of the paper, such a lattice

calculation, starting from Euclidean correlators is indeed possible. A new feature in the case

of B-decays in particular, one which is a consequence of the heavy-quark symmetry, is that

the B� and B are almost degenerate (m�
B � mB � 45 MeV). The radiation of a relatively

soft photon can therefore cause the transition from a B-meson to an internal B� close to its

mass-shell. Lattice calculations of the form factors would allow us to investigate the e�ect

this small hyperfine splitting has on the size of the structure dependent terms as a function

of �E.

In the absence of lattice calculations of the form factors, we note the phenomenological

analysis of Ref. [37], based on the extreme assumption of the single pole dominance, B� for

FV and B1(5721) for FA (in reality many other virtual states contribute to the form factors):

FV (x�) � CV

x� � 1 + m2
B�/m2

B

, FA(x�) � CA

x� � 1 + m2
B1(5721)/m

2
B

, (B17)

with CV = 0.24 and CA = 0.20. The corresponding ratios R1 are shown in Figure 14, from

which it can be seen that under this assumption the structure-dependent contributions to
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FIG. 13: Point-like (pt), structure-dependent (SD) and interference (INT) contributions to the
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FIG. 14: Structure-dependent (SD) and interference (INT) contributions to R1 for the decays

B � ���. Going from left to right, the plots correspond to � = e, � = µ and � = � respectively.

B � e�e� for E� � 20 MeV can be very large, but are small for B � µ�µ� and B � ���� .
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that can be expressed in terms of (two if "⇤
· k = 0) hadronic form–factors (usually called FA and FV )

• by using the �pt results (v.cirigliano and i.rosell, PRL 99 (2007)) for these quantities, we have estimated the structure
dependent real contribution to be, nowadays, phenomenologically irrelevant for P = {⇡, K} and ` = µ
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the structure dependent real contribution: �SD
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RM123+SOTON, PRD 91 (2015)
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FIG. 12: Point-like (pt), structure-dependent (SD) and interference (INT) contributions to the

decay ⇡ � ���. The first (second) row corresponds to � = e (� = µ).

for a range of values of x� will prove to be very useful as a check of the range of validity

of the point-like approximation. As stressed in the main body of the paper, such a lattice

calculation, starting from Euclidean correlators is indeed possible. A new feature in the case

of B-decays in particular, one which is a consequence of the heavy-quark symmetry, is that

the B� and B are almost degenerate (m�
B � mB � 45 MeV). The radiation of a relatively

soft photon can therefore cause the transition from a B-meson to an internal B� close to its

mass-shell. Lattice calculations of the form factors would allow us to investigate the e�ect

this small hyperfine splitting has on the size of the structure dependent terms as a function

of �E.

In the absence of lattice calculations of the form factors, we note the phenomenological

analysis of Ref. [37], based on the extreme assumption of the single pole dominance, B� for

FV and B1(5721) for FA (in reality many other virtual states contribute to the form factors):

FV (x�) � CV

x� � 1 + m2
B�/m2

B

, FA(x�) � CA

x� � 1 + m2
B1(5721)/m

2
B

, (B17)

with CV = 0.24 and CA = 0.20. The corresponding ratios R1 are shown in Figure 14, from

which it can be seen that under this assumption the structure-dependent contributions to
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B � e�e� for E� � 20 MeV can be very large, but are small for B � µ�µ� and B � ���� .
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R
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m� !0

n
�R(m� , E) � �pt

R
(m� , E)

o
< 0.002

�(E) � �0

e2

SD negligible

R1
A ΔE( ) = Γ1

A ΔE( )
Γ0

α ,pt ΔE( )+ Γ1
pt ΔE( ) ,     A= SD,  INT{ }

K → µν γ( )



R1
A(ΔE) = Γ1

A(ΔE)
Γ0

α ,pt + Γ1
pt (ΔE)

  ,   A = { SD, INT } SD!=!structure!dependent!
INT!=!interference!

π → µν(γ )

K → eν(γ ) K → µν(γ )

π → eν(γ )

ΔE = 20 MeV

Interference!contribu3ons!are!negligible!in!all!the!decays!
Structurejdependent!contribu3ons!can!be!sizable!for!!!!!!!!!!!!!!!!!!!!!!!!!but!they!!
are!negligible!for!!!!!!!!!!!!!!!!!!!!!!!!!!!(which!is!experimentally!accessible)!

K → eν(γ )
ΔE < 20 MeV 63 
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Γ Pℓ2
±( ) = Γ0 − Γ0

pt( )+ Γ0
pt + Γ1

pt ΔE( )( )

In order to ensure the cancellation of IR divergences with good 
numerical precision, we rewrite:

The strategy: a substantial improvement

26

Γ Pℓ2
±( ) = Γ0 − Γ0

pt( )+ Γ0
pt + Γ1

pt ΔE( )( )
+(Γ1(ΔE) − Γpt

1 (ΔE))
Both the quantities         and                are now evaluated on the latticeΓ0 Γ1(ΔE)

The contribution                                         can be computed in the 
infinite-volume limit requiring the knowledge of the structure 
dependent form factors                and of 

d2Γ1
dxγdxℓ

= αemΓ(tree)

4π {
d2Γpt

dxγdxℓ
+ d2ΓSD

dxγdxℓ
+ d2ΓINT

dxγdxℓ }
xγ = 2p ⋅ k

m2
P

xℓ = 2p ⋅ pℓ − m2
ℓ

m2
P

Γ1 − Γpt
1 = ΓSD + ΓINT

FA,V(xγ) fP



The contributions from soft virtual photon to        and         in the first 
term are exactly the same and the IR divergence cancels in the 
difference                  .Γ0 − Γ0

pt

Γ0 Γ0
pt

The sum                          in the second term is IR finite since it is a 
physically well defined quantity. This term can be thus calculated in 
perturbation theory with a different IR cutoff.  

Γ0
pt + Γ1

pt ΔE( )

The three terms are also separately gauge invariant.
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ΔΓ0 L( ) = Γ0 L( )− Γ0
pt L( ) Γ pt ΔE( ) = lim

mγ →0
Γ0

pt mγ( )+ Γ1pt ΔE,mγ( )⎡⎣ ⎤⎦

The strategy

Γ Pℓ2
±( ) = Γ0 − Γ0

pt( )+ Γ0
pt + Γ1

pt ΔE( )( )
+(Γ1(ΔE) − Γpt

1 (ΔE))

Γ1 − Γpt
1The difference                   in the third term is also IR finite.



1
k2

→ MW
2

MW
2 − k2

1
k2

+  QED
for π and l+

is calculated in perturba6on theory with a pointlike pionΓpt ΔE( )

UV divergences in         
are regularized with 
the W-regulariza6on

Γ0
pt

IR divergences are regularized with the a photon mass
42

Calculation of Γpt ΔE( ) = Γ0
pt + Γ1

pt ΔE( )
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Γ0
pt mγ( )

Γ1
pt ΔE,mγ( )

Γ pt ΔE( ) = lim
mγ →0

Γ0
pt mγ( )+ Γ1pt ΔE,mγ( )⎡⎣ ⎤⎦
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The result is:

IMPORTANT CHECK: For ΔE=ΔEMAX the well known result for the total rate as 

in S. M. Berman, PRL 1 (1958) 468 and T. Kinoshita, PRL 2 (1959) 477 is 
reproduced 30

NEW

Γ pt ΔE( ) = lim
mγ →0

Γ0
pt mγ( )+ Γ1pt ΔE,mγ( )⎡⎣ ⎤⎦



is the first term in the master formula

IR divergences (Log(L)) cancel in the difference.  
Also 1/L corrections are universal and cancel in the difference

Montecarlo simulation 
Lattice QCD

1

Perturbation theory 
with pointlike pion 

in finite volume

2

Γ Pℓ2
±( ) = lim

L→∞
Γ0 L( )− Γ0

pt L( )⎡⎣ ⎤⎦ + limmγ →0
Γ0

pt mγ( )+ Γ1pt ΔE,mγ( )⎡⎣ ⎤⎦

arXiv:1711.06537
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ΔΓ0 L( ) = Γ0 L( )− Γ0
pt L( )

ΔΓ0 L( )
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The leading-order electromagnetic and strong isospin-breaking corrections to the ratio of Kμ2 and πμ2
decay rates are evaluated for the first time on the lattice, following a method recently proposed. The lattice
results are obtained using the gauge ensembles produced by the European Twisted Mass Collaboration with
Nf ¼ 2þ 1þ 1 dynamical quarks. Systematic effects are evaluated and the impact of the quenched QED
approximation is estimated. Our result for the correction to the tree-level Kμ2/πμ2 decay ratio is
−1.22ð16Þ%, to be compared to the estimate of −1.12ð21Þ% based on chiral perturbation theory and
adopted by the Particle Data Group.
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Introduction.—The determination of a number of had-
ronic quantities relevant for flavor physics phenomenology
using lattice QCD simulations has reached such an impres-
sive level of precision [1] that both electromagnetic (e.m.)
and strong isospin-breaking (IB) effects cannot be
neglected.
In the past few years accurate lattice results including

e.m. and IB effects have been obtained for the hadron
spectrum, as in the case of the charged-neutral mass
splittings of pseudoscalar (P) mesons and baryons (see,
e.g., Refs. [2,3]). In this respect the inclusion of QED
effects in lattice QCD simulations has been carried out
following mainly two methods: in the first one, QED is
added directly to the action and QCDþ QED simulations
are performed at few values of the electric charge (see, e.g.,
Refs. [3,4]), while the second one, the RM123 approach of
Refs. [2,5], consists in an expansion of the lattice path-

integral in powers of two small parameters [the e.m.
coupling αem and the light-quark mass difference
ðmd −muÞ/ΛQCD], which are both at the level of ≈1%.
Since it suffices to work at leading order in the perturbative
expansion, the attractive feature of the RM123 method is
that the small values of the two expansion parameters are
factorized out, so that one can get relatively large numerical
signals for the slopes of the corrections with respect to the
expansion parameters. Moreover, the slopes can be deter-
mined in isosymmetric QCD. In this Letter we adopt the
RM123 method.
While the calculation of e.m. effects in the hadron

spectrum does not suffer from infrared (IR) divergences,
the same is not true in the case of hadronic amplitudes,
where e.m. IR divergences are present and cancel for well-
defined, measurable physical quantities only after including
diagrams containing both real and virtual photons [6]. This
is the case, for example, for the leptonic πl2 and Kl2 and
the semileptonic Kl3 decays, which play a crucial role for
an accurate determination of the Cabibbo-Kobayashi-
Maskawa (CKM) entries jVus/Vudj and jVusj [7].
The presence of IR divergences requires the develop-

ment of additional strategies to those used in the compu-
tation of e.m. effects in the hadron spectrum. Such a new
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The leading electromagnetic (e.m.) and strong isospin-breaking corrections to the ⇡+ !

µ+⌫[�] and K+ ! µ+⌫[�] leptonic decay rates are evaluated for the first time on the lattice.

The results are obtained using gauge ensembles produced by the European Twisted Mass

Collaboration with Nf = 2 + 1 + 1 dynamical quarks. The relative leading-order e.m. and

strong isospin-breaking corrections to the decay rates are 1.53(19)% for ⇡µ2 decays and

0.24(10)% for Kµ2 decays. Using the experimental values of the ⇡µ2 and Kµ2 decay rates

and updated lattice QCD results for the pion and kaon decay constants in isosymmetric

QCD, we find that the Cabibbo-Kobayashi-Maskawa matrix element |Vus| = 0.22538(38),

reducing by a factor of about 1.8 the corresponding uncertainty in the PDG review. Our

calculation of |Vus| allows also an accurate determination of the first-row CKM unitarity

relation |Vud|2 + |Vus|2 + |Vub|2 = 0.99988(44). Theoretical developments in this paper

include a detailed discussion of how QCD can be defined in the full QCD+QED theory and

an improved renormalisation procedure in which the bare lattice operators are renormalised

non-perturbatively into the RI'-MOM scheme and subsequently matched pertubatively at

O(↵em↵s(MW )) into the W-regularisation scheme appropriate for these calculations.
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Lattice calculation of Γ0(L) at O(α)

The Feynman diagrams at O(α) can be divided in 3 classes
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 1    The photon  
      is attached to 
      quark lines

 2    The photon  
      connects one 
      quark and one  
      charged lepton  
      line

 3    Leptonic wave  
      function  
      renormalization.     
      It cancels in 

Γ0 (L)− Γ0
pt L( )
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Lattice calculation of Γ0(L) at O(α)
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δC qq( ) t( )
C 0( ) t( ) t>>a⎯ →⎯⎯

δ ZPAP
qq( )⎡⎣ ⎤⎦

ZP
0( )AP

0( ) − δMP
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0( ) 1+MP

0( )t( )
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a   

 
C1(t)αβ = − d 3∫ !x  d 4x1  d 4x2 0 T JW

ν (0) jµ (x1) φ†(!x,−t){ } 0  

 
× Δ(x1, x2 ) γ ν (1−γ 5 ) S(0, x2 ) γ µ( )αβ eEℓt2−i  

"pℓ⋅
"x2

 ω ℓ =
"
kℓ
2 +mℓ

2

 
ωγ =

!
kγ
2 +mγ

2

We need to ensure that the t2 integration converges as t2 → ∞ . The large t2

behavior is given by the factor
 
exp Eℓ −ω ℓ −ωγ( )  t2⎡⎣ ⎤⎦

 Eℓ =
"pℓ
2 +mℓ

2
 
!
kℓ +
!
kγ =

!pℓ

 
ω ℓ +ωγ( )

min
= mℓ

2 +mγ
2( ) + "pℓ2 > Eℓ

The integral is convergent and the con6nua6on from Minkowski to Euclidean space

can be performed (same if we set mγ=0 but remove the photon zero mode in FV).

A technical but important point:

- mass gap between the decaying par6cle and the intermediate states

- absence of lighter intermediate states

CONDITIONS:

51

Lattice calculation of Γ0(L) at O(α)
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δC qℓ( ) t( )αβ



Calculation of Γ ΔE( ) =  lim
V→∞

Γ0 L( )− Γ0
pt L( )( )  + lim

mγ →0
Γ0

pt + Γ1
pt ΔE( )( )

is calculated in perturba/on theory with a pointlike pionΓ0
pt L( )

IR divergences are regularized by the finite volume (same of              )Γ0 L( )

 

!q = 2π
L

nx ,ny ,nz( )with
 
d 3q… →∫  2π

L
⎛
⎝⎜

⎞
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3

…
!q
∑

 
!q ≠ 0,0,0( )
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The result has the form:

 rℓ = mℓ /mP

 
Γ0
pt L( ) = !C0 (rℓ )log mPL( ) +C0 (rℓ )+

C1(rℓ )
mPL

+O 1
L2

⎛
⎝⎜

⎞
⎠⎟

Calculation of Γ0
pt (L)
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                      Calculation of Γ0
pt (L)

Both the leading [log(mPL)]  
and next-to-leading [O(1/L)] 
volume dependence cancel in                             
                      .

UNIVERSAL

Γ0 L( )− Γ0pt L( )
The remaining, structure 
dependent, O(1/L2) finite 
volume effects are milder and 
can be fitted from the lattice 
data evaluated at different 
volumes.

PRD 95 (2017) 034504
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Details of the lattice simulation

  We have used the gauge field configurations generated by ETMC, 

  European Twisted Mass Collaboration, in the pure isosymmetric QCD 

  theory with Nf=2+1+1 dynamical quarks

- Gluon action: Iwasaki 

- Quark action: twisted mass at maximal twist 

                         (automatically O(a) improved) 

OS for s and c valence quarks 

- Scale setting: 
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SUPPLEMENTARY MATERIAL

Details of the calculation described in this letter will
be presented in Ref. [24]. Here, in subsection A we col-
lect the main parameters of the simulations performed in
the isosymmetric QCD theory and discuss briefly their
relation with the prescription of Ref. [3], while in subsec-
tion B we sketch some of the key points and illustrate the
quality of the results by showing the time-dependence of
the most complicated diagrams, i.e. those in Fig. 4(a) and
(b) in which a photon is exchanged between the quarks
and the final-state charged lepton.

A. Simulation parameters

The main parameters of the simulations performed
within isosymmetric QCD in Ref. [15] are collected in
Table I.

ensemble � V/a4 aµud aµ� aµ� Ncf aµs M⇡ MK

(MeV) (MeV)

A40.40 1.90 403 · 80 0.0040 0.15 0.19 100 0.02363 317(12) 576(22)

A30.32 323 · 64 0.0030 150 275(10) 568(22)

A40.32 0.0040 100 316(12) 578(22)

A50.32 0.0050 150 350(13) 586(22)

A40.24 243 · 48 0.0040 150 322(13) 582(23)

A60.24 0.0060 150 386(15) 599(23)

A80.24 0.0080 150 442(17) 618(14)

A100.24 0.0100 150 495(19) 639(24)

A40.20 203 · 48 0.0040 150 330(13) 586(23)

B25.32 1.95 323 · 64 0.0025 0.135 0.170 150 0.02094 259 (9) 546(19)

B35.32 0.0035 150 302(10) 555(19)

B55.32 0.0055 150 375(13) 578(20)

B75.32 0.0075 80 436(15) 599(21)

B85.24 243 · 48 0.0085 150 468(16) 613(21)

D15.48 2.10 483 · 96 0.0015 0.1200 0.1385 100 0.01612 223 (6) 529(14)

D20.48 0.0020 100 256 (7) 535(14)

D30.48 0.0030 100 312 (8) 550(14)

TABLE I: Values of the valence and sea bare quark masses (in
lattice units), of the pion and kaon masses for the Nf = 2+ 1+ 1

ETMC gauge ensembles used in Ref. [15] and for the gauge ensem-
ble, A40.40 added to improve the investigation of FVEs. A separa-
tion of 20 trajectories between each of the Ncf analysed configura-
tions. The bare twisted masses µ� and µ� describe the strange and
charm sea doublet according to Ref. [18]. The values of the strange
quark bare mass aµs, given for each �, correspond to the physical

strange quark mass mphys
s (MS, 2GeV) = 99.6(4.3) MeV and to

the mass renormalization constants determined in Ref. [15]. The
central values and errors of pion and kaon masses are evaluated
using the bootstrap procedure of Ref. [15].

Three values of the inverse bare lattice coupling � and
several lattice volumes have been considered. For the
earlier investigation of FVEs ETMC had produced three
dedicated ensembles, A40.20, A40.24 and A40.32, which
share the same quark masses and lattice spacing and dif-
fer only in the lattice size L. To improve the present
investigation we have generated a further gauge ensem-
ble, A40.40, at a larger value of L.

At each lattice spacing di↵erent values of the light sea
quark mass have been considered. The light valence and

sea bare quark masses are always taken to be degenerate
(aµsea

ud = aµval
ud = aµud).

In Ref. [15] the values of the physical u/d and strange
quark masses, mphys

ud (MS, 2GeV) = 3.70(17) MeV and
mphys

s (MS, 2GeV) = 99.6(4.3) MeV, as well as the val-
ues of the lattice spacing, a = 0.0885(36), 0.0815(30),
0.0619(18) fm at � = 1.90, 1.95 and 2.10, have been de-
termined using the following inputs for the isosymmetric

QCD theory: M (0)
⇡ = M⇡0 = 134.98 MeV, M (0)

K = 494.2

MeV and f (0)
⇡ = 130.41 MeV. The first two inputs corre-

spond to the values suggested in the FLAG reviews [2],

while the value of f (0)
⇡ corresponds to the use of the exper-

imental rate �(⇡`2), the value of |Vud| from Ref. [29] and
the value �R⇡ = 0.0176 (21) obtained in ChPT [27, 28]
and currently adopted by the PDG [14]. We will refer to
the choice of the above three inputs as the FLAG/PDG
prescription.
In Ref. [6] we have calculated the pion and kaon masses

in the isosymmetric QCD theory according to the pre-

scription of Ref. [3], obtaining M (0)
⇡ = 134.9 (2) MeV,

M (0)
K = 494.4 (1) MeV. We anticipate that in Ref. [24]

we shall provide a slightly di↵erent value for �R⇡, which

corresponds to a change of [f (0)
⇡ ]2 less than 0.5%. Since

[M (0)
⇡ /f (0)

⇡ ]2 / mphys
ud +O([mphys

ud ]2), the change expected

in mphys
ud is less than 0.02 MeV. Analogously, the change

in mphys
s is expected to be less than 0.5 MeV. Corre-

spondingly, the variations of �R⇡ and �RK⇡ are well
within the statistical uncertainties, as it can be easily
inferred from Fig. 6 in the case of �RK⇡.
The above findings indicate that our prescription [3]

and the FLAG/PDG one di↵er only by e↵ects which are
well within the uncertainties of the input parameters of
Ref. [15]. This justifies the use of the FLAG average for

the ratio f (0)
K /f (0)

⇡ to get Eq. (15) as well as the com-
parison of our result (14) with the ChPT prediction of
Refs. [27, 28].

B. Evaluation of �Aµ
P /�A

(0)
P

The evaluation of the diagrams 4(a) and (b), corre-
sponding to the “new” term �A`

P , starts from the corre-
lator �C`

P (t) defined as

�C`(t) =
X

↵�

u⌫`↵(p⌫`)C1(t)↵�v`�(p`) , (19)

where C1(t)↵� is given by Eq. (35) of Ref. [1], while t is
the time distance between the P-meson source and the
insertion of the weak (V-A) current. At large time dis-
tances and for T ! 1 one has

�C`(t) ��!
t�a

Z(0)
P �A`

P

2M (0)
P

T `
P e

�M(0)
P t , (20)

where T `
P = Tr

⇥
�0(1� �5)``�0(1� �5)⌫`⌫`

⇤
is the tree-

level leptonic trace. Analogously, in the absence of the

fπ
0( ) = 130.41 20( )  MeV
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LATTICE RESULT

V.Cirigliano and H.Neufeld, 

PLB 700 (2011) 7

 δRK − δR
π
= −  0.0112 (21)

ChPT

Vus
Vud

fK
0( )

fπ
0( ) = 0.27683 29( )exp 20( )th

fK
0( )

fπ
0( ) = 1.1966 18( )

Vus
Vud

= 0.23135 24( )exp 39( )th
FLAG(2019) Nf=2+1+1 Vus = 0.22538 46( )

Vus = 0.22526 46( )
Hardy and Towner, 2016

Vud  from

Seng et al., 2018
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FIG. 1: Feynman’s diagrams representing the amplitudes with the emission of a real photon from the meson (left panel) or from the

charged lepton in the final state (right panel).

that the SD corrections might instead be relevant for the decays of pions and kaons into electrons. Moreover, by using
the same single–pole dominance approximation originally used in ref. [15], the SD corrections have been estimated to
be phenomenologically relevant in the case of heavy flavoured mesons.

In this paper we provide the first non–perturbative lattice calculation of the radiative decay rates P ! `⌫̄� in the
case of pions, kaons, D and Ds mesons. The case of bottom mesons will be studied in future works on the subject.

The plan of the paper is as follows. In section . . .

II. THE RADIATIVE DECAY RATE

The non-perturbative contribution to the radiative leptonic decay rate for the processes P ! `⌫� is encoded in the
following hadronic matrix–element, see left panel in Fig. 1

H↵r
W (k, p) = ✏rµ(k) H↵µ

W (k, p) = ✏rµ(k)

Z
d4y eik·y Th0|j↵

W (0)jµ
em(y)|P (p)i , (1)

where ✏rµ(k) is the polarization vector of the outgoing real photon having four–momentum k, p is the momentum of
the ingoing pseudoscalar meson of mass mP (p2 = m2

P ). The operators

jµ
em(x) =

X

f

qf  ̄f (x)�µ f (x) , j↵
W (x) = j↵

V (x) � j↵
A(x) =  ̄1(x) (�↵ � �↵�5) 2(x) , (2)

are respectively the electromagnetic hadronic current and the hadronic weak current expressed in terms of the di↵erent
quark fields  f having electric charge qf in units of the charge of the positron. In order to calculate the full amplitude
one has to consider the contribution in which the photon is emitted from the final-state charged lepton, see right panel
in Fig. 1. The latter contribution can however, be computed in perturbation theory using the meson decay constant
fP . All the contributions are combined in the formulae for the decay rate given in appendix A.

The decomposition of H↵r
W (k, p) in terms of scalar form–factors has been discussed in ref. [9] (see also [10]). Here we

adopt the same basis used in that paper to write

H↵r
W (k, p) = ✏rµ(k)

(
H1

⇥
k2gµ↵ � kµk↵

⇤
+ H2

⇥
(p · k � k2)kµ � k2(p � k)µ

⇤
(p � k)↵

� i
FV

mP
"µ↵��k�p� +

FA

mP

⇥
(p · k � k2)gµ↵ � (p � k)µk↵

⇤

+ fP


gµ↵ +

(2p � k)µ(p � k)↵

2p · k � k2

�)
. (3)
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that the SD corrections might instead be relevant for the decays of pions and kaons into electrons. Moreover, by using
the same single–pole dominance approximation originally used in ref. [15], the SD corrections have been estimated to
be phenomenologically relevant in the case of heavy flavoured mesons.

In this paper we provide the first non–perturbative lattice calculation of the radiative decay rates P ! `⌫̄� in the
case of pions, kaons, D and Ds mesons. The case of bottom mesons will be studied in future works on the subject.

The plan of the paper is as follows. In section . . .

II. THE RADIATIVE DECAY RATE

The non-perturbative contribution to the radiative leptonic decay rate for the processes P ! `⌫� is encoded in the
following hadronic matrix–element, see left panel in Fig. 1
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W (k, p) = ✏rµ(k) H↵µ

W (k, p) = ✏rµ(k)

Z
d4y eik·y Th0|j↵

W (0)jµ
em(y)|P (p)i , (1)

where ✏rµ(k) is the polarization vector of the outgoing real photon having four–momentum k, p is the momentum of
the ingoing pseudoscalar meson of mass mP (p2 = m2

P ). The operators
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em(x) =
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qf  ̄f (x)�µ f (x) , j↵
W (x) = j↵

V (x) � j↵
A(x) =  ̄1(x) (�↵ � �↵�5) 2(x) , (2)

are respectively the electromagnetic hadronic current and the hadronic weak current expressed in terms of the di↵erent
quark fields  f having electric charge qf in units of the charge of the positron. In order to calculate the full amplitude
one has to consider the contribution in which the photon is emitted from the final-state charged lepton, see right panel
in Fig. 1. The latter contribution can however, be computed in perturbation theory using the meson decay constant
fP . All the contributions are combined in the formulae for the decay rate given in appendix A.

The decomposition of H↵r
W (k, p) in terms of scalar form–factors has been discussed in ref. [9] (see also [10]). Here we

adopt the same basis used in that paper to write
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W (k, p) = ✏rµ(k)

(
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that the SD corrections might instead be relevant for the decays of pions and kaons into electrons. Moreover, by using
the same single–pole dominance approximation originally used in ref. [15], the SD corrections have been estimated to
be phenomenologically relevant in the case of heavy flavoured mesons.

In this paper we provide the first non–perturbative lattice calculation of the radiative decay rates P ! `⌫̄� in the
case of pions, kaons, D and Ds mesons. The case of bottom mesons will be studied in future works on the subject.

The plan of the paper is as follows. In section . . .

II. THE RADIATIVE DECAY RATE

The non-perturbative contribution to the radiative leptonic decay rate for the processes P ! `⌫� is encoded in the
following hadronic matrix–element, see left panel in Fig. 1

H↵r
W (k, p) = ✏rµ(k) H↵µ

W (k, p) = ✏rµ(k)

Z
d4y eik·y Th0|j↵

W (0)jµ
em(y)|P (p)i , (1)

where ✏rµ(k) is the polarization vector of the outgoing real photon having four–momentum k, p is the momentum of
the ingoing pseudoscalar meson of mass mP (p2 = m2

P ). The operators

jµ
em(x) =

X

f

qf  ̄f (x)�µ f (x) , j↵
W (x) = j↵

V (x) � j↵
A(x) =  ̄1(x) (�↵ � �↵�5) 2(x) , (2)

are respectively the electromagnetic hadronic current and the hadronic weak current expressed in terms of the di↵erent
quark fields  f having electric charge qf in units of the charge of the positron. In order to calculate the full amplitude
one has to consider the contribution in which the photon is emitted from the final-state charged lepton, see right panel
in Fig. 1. The latter contribution can however, be computed in perturbation theory using the meson decay constant
fP . All the contributions are combined in the formulae for the decay rate given in appendix A.

The decomposition of H↵r
W (k, p) in terms of scalar form–factors has been discussed in ref. [9] (see also [10]). Here we

adopt the same basis used in that paper to write

H↵r
W (k, p) = ✏rµ(k)

(
H1

⇥
k2gµ↵ � kµk↵

⇤
+ H2

⇥
(p · k � k2)kµ � k2(p � k)µ

⇤
(p � k)↵

� i
FV

mP
"µ↵��k�p� +

FA

mP

⇥
(p · k � k2)gµ↵ � (p � k)µk↵

⇤

+ fP


gµ↵ +

(2p � k)µ(p � k)↵

2p · k � k2

�)
. (3)

Hαμ
SD(k, p)

Hαμ
pt (k, p)

3

The term in the last line of Eq. (3), H↵µ
pt (k, p), corresponds to the point–like infrared–divergent contribution. The

other terms correspond to the so called Structure Dependent contribution, H↵µ
SD(k, p). H↵µ

pt (k, p) saturates the Ward
Identity satisfied by H↵µ

W (k, p), i.e.

kµ H↵µ
W (k, p) = kµ H↵µ

pt (k, p) = ih0|j↵
W (0)|P (p)i = fP p↵ , kµ H↵µ

SD(k, p) = 0 . (4)

The four form-factors H1,2 and FV,A are scalar functions of Lorentz invariants, the squared meson mass m2
P , p · k and

k2. Eq. (3) is valid for generic (o↵-shell) values of the photon momentum and for generic choices of the polarisation
vectors. The knowledge of the four form-factors in the case of o↵-shell photons (k2 6= 0) gives access to the study of
decays in which the pseudo scalar meson decays in four leptons. These processes are very interesting in the search of
physics beyond the Standard Model and will be the subject of a future work. In this work we concentrate on the case
in which the photon is on-shell.

By setting k2 = 0, at fixed meson mass, the form factors are functions of p · k only. Moreover, by choosing a physical
basis for the polarization vectors, i.e. such that (see Eqs. (B6) and Eqs. (B7))

✏r(k) · k = 0 , (5)

one has

H↵r
W (k, p) = ✏r

µ(k)

(
� i

FV

mP
"µ↵��k�p� +


FA

mP
+

fP

p · k

�
(p · k gµ↵ � pµk↵) +

fP

p · k
pµp↵

)
. (6)

Once the decay constant fP and the two SD axial and vector form–factors FA and FV are known, the radiative decay
rate can be calculated by using the formulae given in appendix A. These formulae are expressed in terms of the
convenient dimensionless variable

x� =
2p · k

m2
P

with 0  x�  1 � m2
`

m2
P

, (7)

where m` is the mass of the outgoing lepton in the process P ! `⌫�.

III. EXTRACTING THE FORM–FACTORS FORM EUCLIDEAN CORRELATORS

In order to connect the hadronic matrix–element with Euclidean correlators, the primary observables in lattice calcula-
tions, it is useful to express the H↵r

W (k, p), defined in Eq. (1) in Minkowsky space, by using the canonical representation,
i.e. in terms of the contributions coming from the di↵erent time–orderings. To this end, we define

H↵r
W (k, p) = H↵r

W,1(k, p) + H↵r
W,2(k, p) , jr(k) =

Z
d3y e�ik·y ✏r

µ(k) jµ
em(0,y) , (8)

and perform the y0 integral,

H↵r
W,1(k, p) =

Z 0

�1
dty eiE�ty h0|j↵

W (0)ei(Ĥ�E�i")tyjr(k)|P (p)i = �ih0|j↵
W (0)

1

Ĥ + E� � E � i"
jr(k)|P (p)i ,

H↵r
W,2(k, p) =

Z 1

0
dty eiE�ty h0|jr(k)e�i(Ĥ�i")tyj↵

W (0)|P (p)i = �ih0|jr(k)
1

Ĥ � E� � i"
j↵
W (0)|P (p)i , (9)

where Ĥ is the Hamiltonian operator and we have introduced the compact notation

E =
q

m2
P + p2 , E� = |k| , (10)

are the energies of the incoming meson and of the outgoing real photon.

The important observation that makes the lattice calculation possible by using standard e↵ective–mass/residue tech-
niques is that the integral appearing in the definition of H↵r

W (k, p) can be rotated to Euclidean signature without

Hαμ
pt (k, p)
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FIG. 1: Feynman’s diagrams representing the amplitudes with the emission of a real photon from the meson (left panel) or from the

charged lepton in the final state (right panel).

that the SD corrections might instead be relevant for the decays of pions and kaons into electrons. Moreover, by using
the same single–pole dominance approximation originally used in ref. [15], the SD corrections have been estimated to
be phenomenologically relevant in the case of heavy flavoured mesons.

In this paper we provide the first non–perturbative lattice calculation of the radiative decay rates P ! `⌫̄� in the
case of pions, kaons, D and Ds mesons. The case of bottom mesons will be studied in future works on the subject.

The plan of the paper is as follows. In section . . .

II. THE RADIATIVE DECAY RATE

The non-perturbative contribution to the radiative leptonic decay rate for the processes P ! `⌫� is encoded in the
following hadronic matrix–element, see left panel in Fig. 1

H↵r
W (k, p) = ✏rµ(k) H↵µ

W (k, p) = ✏rµ(k)

Z
d4y eik·y Th0|j↵

W (0)jµ
em(y)|P (p)i , (1)

where ✏rµ(k) is the polarization vector of the outgoing real photon having four–momentum k, p is the momentum of
the ingoing pseudoscalar meson of mass mP (p2 = m2

P ). The operators

jµ
em(x) =

X

f

qf  ̄f (x)�µ f (x) , j↵
W (x) = j↵

V (x) � j↵
A(x) =  ̄1(x) (�↵ � �↵�5) 2(x) , (2)

are respectively the electromagnetic hadronic current and the hadronic weak current expressed in terms of the di↵erent
quark fields  f having electric charge qf in units of the charge of the positron. In order to calculate the full amplitude
one has to consider the contribution in which the photon is emitted from the final-state charged lepton, see right panel
in Fig. 1. The latter contribution can however, be computed in perturbation theory using the meson decay constant
fP . All the contributions are combined in the formulae for the decay rate given in appendix A.

The decomposition of H↵r
W (k, p) in terms of scalar form–factors has been discussed in ref. [9] (see also [10]). Here we

adopt the same basis used in that paper to write

H↵r
W (k, p) = ✏rµ(k)

(
H1

⇥
k2gµ↵ � kµk↵

⇤
+ H2

⇥
(p · k � k2)kµ � k2(p � k)µ

⇤
(p � k)↵

� i
FV

mP
"µ↵��k�p� +

FA

mP

⇥
(p · k � k2)gµ↵ � (p � k)µk↵

⇤

+ fP


gµ↵ +

(2p � k)µ(p � k)↵

2p · k � k2

�)
. (3)
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FIG. 1: Feynman’s diagrams representing the amplitudes with the emission of a real photon from the meson (left panel) or from the
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that the SD corrections might instead be relevant for the decays of pions and kaons into electrons. Moreover, by using
the same single–pole dominance approximation originally used in ref. [15], the SD corrections have been estimated to
be phenomenologically relevant in the case of heavy flavoured mesons.

In this paper we provide the first non–perturbative lattice calculation of the radiative decay rates P ! `⌫̄� in the
case of pions, kaons, D and Ds mesons. The case of bottom mesons will be studied in future works on the subject.

The plan of the paper is as follows. In section . . .

II. THE RADIATIVE DECAY RATE

The non-perturbative contribution to the radiative leptonic decay rate for the processes P ! `⌫� is encoded in the
following hadronic matrix–element, see left panel in Fig. 1

H↵r
W (k, p) = ✏rµ(k) H↵µ

W (k, p) = ✏rµ(k)

Z
d4y eik·y Th0|j↵

W (0)jµ
em(y)|P (p)i , (1)

where ✏rµ(k) is the polarization vector of the outgoing real photon having four–momentum k, p is the momentum of
the ingoing pseudoscalar meson of mass mP (p2 = m2

P ). The operators

jµ
em(x) =

X

f

qf  ̄f (x)�µ f (x) , j↵
W (x) = j↵

V (x) � j↵
A(x) =  ̄1(x) (�↵ � �↵�5) 2(x) , (2)

are respectively the electromagnetic hadronic current and the hadronic weak current expressed in terms of the di↵erent
quark fields  f having electric charge qf in units of the charge of the positron. In order to calculate the full amplitude
one has to consider the contribution in which the photon is emitted from the final-state charged lepton, see right panel
in Fig. 1. The latter contribution can however, be computed in perturbation theory using the meson decay constant
fP . All the contributions are combined in the formulae for the decay rate given in appendix A.

The decomposition of H↵r
W (k, p) in terms of scalar form–factors has been discussed in ref. [9] (see also [10]). Here we

adopt the same basis used in that paper to write

H↵r
W (k, p) = ✏rµ(k)

(
H1

⇥
k2gµ↵ � kµk↵

⇤
+ H2

⇥
(p · k � k2)kµ � k2(p � k)µ

⇤
(p � k)↵

� i
FV

mP
"µ↵��k�p� +

FA

mP

⇥
(p · k � k2)gµ↵ � (p � k)µk↵

⇤

+ fP


gµ↵ +

(2p � k)µ(p � k)↵

2p · k � k2

�)
. (3)

3

The term in the last line of Eq. (3), H↵µ
pt (k, p), corresponds to the point–like infrared–divergent contribution. The

other terms correspond to the so called Structure Dependent contribution, H↵µ
SD(k, p). H↵µ

pt (k, p) saturates the Ward
Identity satisfied by H↵µ

W (k, p), i.e.

kµ H↵µ
W (k, p) = kµ H↵µ

pt (k, p) = ih0|j↵
W (0)|P (p)i = fP p↵ , kµ H↵µ

SD(k, p) = 0 . (4)

The four form-factors H1,2 and FV,A are scalar functions of Lorentz invariants, the squared meson mass m2
P , p · k and

k2. Eq. (3) is valid for generic (o↵-shell) values of the photon momentum and for generic choices of the polarisation
vectors. The knowledge of the four form-factors in the case of o↵-shell photons (k2 6= 0) gives access to the study of
decays in which the pseudo scalar meson decays in four leptons. These processes are very interesting in the search of
physics beyond the Standard Model and will be the subject of a future work. In this work we concentrate on the case
in which the photon is on-shell.

By setting k2 = 0, at fixed meson mass, the form factors are functions of p · k only. Moreover, by choosing a physical
basis for the polarization vectors, i.e. such that (see Eqs. (B6) and Eqs. (B7))

✏r(k) · k = 0 , (5)

one has

H↵r
W (k, p) = ✏r

µ(k)

(
� i

FV

mP
"µ↵��k�p� +


FA

mP
+

fP

p · k

�
(p · k gµ↵ � pµk↵) +

fP

p · k
pµp↵

)
. (6)

Once the decay constant fP and the two SD axial and vector form–factors FA and FV are known, the radiative decay
rate can be calculated by using the formulae given in appendix A. These formulae are expressed in terms of the
convenient dimensionless variable

x� =
2p · k

m2
P

with 0  x�  1 � m2
`

m2
P

, (7)

where m` is the mass of the outgoing lepton in the process P ! `⌫�.

III. EXTRACTING THE FORM–FACTORS FORM EUCLIDEAN CORRELATORS

In order to connect the hadronic matrix–element with Euclidean correlators, the primary observables in lattice calcula-
tions, it is useful to express the H↵r

W (k, p), defined in Eq. (1) in Minkowsky space, by using the canonical representation,
i.e. in terms of the contributions coming from the di↵erent time–orderings. To this end, we define

H↵r
W (k, p) = H↵r

W,1(k, p) + H↵r
W,2(k, p) , jr(k) =

Z
d3y e�ik·y ✏r

µ(k) jµ
em(0,y) , (8)

and perform the y0 integral,

H↵r
W,1(k, p) =

Z 0

�1
dty eiE�ty h0|j↵

W (0)ei(Ĥ�E�i")tyjr(k)|P (p)i = �ih0|j↵
W (0)

1

Ĥ + E� � E � i"
jr(k)|P (p)i ,

H↵r
W,2(k, p) =

Z 1

0
dty eiE�ty h0|jr(k)e�i(Ĥ�i")tyj↵

W (0)|P (p)i = �ih0|jr(k)
1

Ĥ � E� � i"
j↵
W (0)|P (p)i , (9)

where Ĥ is the Hamiltonian operator and we have introduced the compact notation

E =
q

m2
P + p2 , E� = |k| , (10)

are the energies of the incoming meson and of the outgoing real photon.

The important observation that makes the lattice calculation possible by using standard e↵ective–mass/residue tech-
niques is that the integral appearing in the definition of H↵r

W (k, p) can be rotated to Euclidean signature without

By setting , at fixed meson mass, the form factors depend on  only. 
Moreover, by choosing a physical basis for the polarization vectors, i.e. , one 
has

k2 = 0 p ⋅ k
ϵr(k) ⋅ k = 0



 Euclidean correlators

The convergence of the integral over  is ensured by the safe analytic continuation 
from Minkowsky to Euclidean spacetime, because of the absence of intermediate states 
lighter than the pseudoscalar meson 
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where er
µ(k) is the polarization vector of the photon with four-momentum k, jµ

em is the electro-
magnetic current, ja

W is the hadronic weak current, ja
W = V a �Aa = q̄1 (ga � gag5)q2, and ppp is the

momentum of the meson P with mass mP. To this amplitude, at O(aem), we have to add the diagram
in which the photon is emitted from the final-state charged lepton. The latter contribution can how-
ever, be computed in perturbation theory using the meson decay constant fP. The decomposition
of Har

W (k, p) in terms of form-factors has been discussed, for example, in refs. [8, 15]

Har
W (k, p) = er

µ(k)

(
H1

⇥
k2gµa � kµka⇤+H2

⇥
(p · k� k2)kµ � k2(p� k)µ⇤(p� k)a (2.2)

�i
FV

mP
eµagb kg pb +

FA

mP

⇥
(p · k� k2)gµa � (p� k)µka⇤+ fP


gµa +

(2p� k)µ(p� k)a

2p · k� k2

�)
.

The last term in Eq. (2.2) corresponds to the point-like infrared-divergent contribution. This term
saturates the Ward Identity satisfied by Haµ

W (k, p), i.e. kµ Haµ
W (k, p) = ih0| ja

W (0)|P(p)i = fP pa .

The four form-factors H1,2 and FV,A are scalar functions of Lorentz invariants, the squared meson
mass m2

P, p · k and k2. Eq. (2.2) is valid for generic (off-shell) values of the photon momentum
and for generic choices of the polarisation vectors. By setting the photon on-shell, i.e. by taking
k2 = 0, at fixed meson mass the form factors are functions of p ·k only. A convenient dimensionless
variable is given by xg = 2p · k/m2

P. By choosing a physical basis for the polarization vectors such
that er · k = 0 we have

Har
W (k, p) = er

µ(k)

(
� i

FV (xg)

mP
eµagb kg pb +


FA(xg)

mP
+

fP

p · k

�
(p · k gµa � pµka)+

fP

p · k pµ pa

)
.

(2.3)
Once the decay constant fP and the two SD axial and vector form-factors FA and FV are known, the
decay rate can be calculated by using the formulae given in [15] and in appendix B of [8].

3. Extracting the form factors from Euclidean correlators

The Euclidean correlation function corresponding to Eq. (2.1) is given by

Car
W (t, ppp,kkk) = �ier

µ(kkk)
Z

d4y
Z

d3xxx h0|T{ ja
W (t,000) jµ

em(y)}P(0,xxx)|0ieEg ty�ikkk·yyy+ippp·xxx (3.1)

where k = (iEg ,kkk), with Eg = |kkk|, p = (iE, ppp) and
R

d3xxxP(0,xxx)eippp·xxx is the source of the pseudoscalar
meson with momentum ppp. The convergence of the integral over ty is ensured by the safe analytic
continuation from Minkowski to Euclidean space, because of the absence of intermediate states
lighter than the pseudoscalar meson. The physical form factors can be extracted directly from the
Euclidean correlation functions

Rar
W (t; ppp,kkk) =

2E
e�t(E�Eg ) hP(ppp)|P|0i

Car
W (t; ppp,kkk) = Har

W (k, p)+ · · · (3.2)

where hP(ppp)|P|0i is the matrix element of the operator P between the vacuum and the meson state
and the dots represent sub-leading exponentials. It is useful to note that, in order to separate the

2

1. The hadronic observable

The non-perturbative hadronic contribution to the radiative leptonic decay rate for the pro-

cesses P 7! `⌫�, where P is a pseudoscalar meson, is encoded in the following matrix element

H↵r

W (k, p) =

Z
d4y eik·y ✏rµ(k)Th0|j↵W (0)jµem(y)|P (p)i , (1.1)

where ✏rµ(k) is the polarization vector of the outgoing real photon having four-momentum

k2
= 0, jµem is the electromagnetic hadronic current, j↵W is the weak current and p2 = m2

P is

the four-momentum of the ingoing pseudoscalar meson.

1.1. Decomposition in form-factors

The decomposition of H↵r

W (k, p) in terms of scalar form-factors has been discussed in ref. [1].

Here we use the same basis used in that paper. We start from

H↵r

W (k, p) = ✏rµ(k)

(
H1(p · k)

⇥
k2gµ↵ � kµk↵

⇤

+H2(p · k)
⇥
(p · k � k2

)kµ � k2
(p� k)µ

⇤
(p� k)↵

� i
FV (p · k)

mP

"µ↵��k�p� +
FA(p · k)

mP

⇥
(p · k � k2

)gµ↵ � (p� k)µk↵
⇤

+ fP


gµ↵

+
(2p� k)µ(p� k)↵

2p · k � k2

�)
. (1.2)

The expression appearing in curly-brackets is valid for generic (o↵-shell) values of the photon

momentum and for generic choices of the polarization vectors. The term in the last line

corresponds to the point–like infrared–divergent contribution.

By setting the photon on-shell, i.e. by taking k2
= 0, and by choosing a physical basis for the

polarization vectors (see eqs. (3.6) and eqs. (3.7) below),

✏r · k = 0 , (1.3)
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Figure 1: Feynman’s diagrams representing the correlator C↵r

W
(t, T/2;p,k). The incoming meson is interpolated

at fixed spatial momentum p by the pseudoscalar operator P placed at time 0, the weak current is local and is
placed at the generic time t while the photon propagator is interpolated by a wall-source at T/2 with momentum k
and there is a four–dimensional integral at y. The right-panel, by periodicity, is equivalent to the left-panel but it
can be used to understand the leading exponential behaviour of the correlator when t > T/2.

signature without encountering any obstruction/singularity. In fact H↵r

W (k, p) can be rewritten

as

H↵r

W (k, p) = �i

Z
d4y eE�ty�ik·y ✏rµ(k)Th0|j↵W (0)jµem(y)|P (p)i , (2.1)

where now all the time-components of the di↵erent four-vectors are euclidean. In particular

we have

k = (iE� ,k) , p = (iE,p) . (2.2)

The point to be noticed is that, for physical (non–vanishing) photon energies, the Euclidean

time–integrals corresponding to the two time-orderings are both convergent,

H↵r

W,1(k, p) = �i

Z 0

�1
dty h0|j↵W (0)e(H+E��E)ty jr(k)|P (p)i

= �ih0|j↵W (0)
1

H + E� � E
jr(k)|P (p)i ,

H↵r

W,2(k, p) =

Z 1

0

dty h0|jr(k)e�(H�E�)ty j↵W (0)|P (p)i

= �ih0|jr(k) 1

H � E�

j↵W (0)|P (p)i , (2.3)

where we have used the fact that the lightest internal hadronic state, appearing in the time–

ordering H↵r

W,1(k, p), is the pseudoscalar meson with spatial momentum p� k and we have

q
m2

P
+ (p� k)2 + E� >

q
m2

P
+ p2 , |k| 6= 0 . (2.4)

we have

H↵r

W (k, p) =

✏rµ(k)

⇢
�i

FV (p · k)
mP

"µ↵��k�p� +


FA(p · k)

mP

+
fP
p · k

�
(p · k gµ↵ � pµk↵

) +
fP
p · k pµp↵

�
.

(1.4)

1.2. Canonical representation

In order to connect the matrix–element with euclidean correlators it is useful to express

H↵r

W (k, p) in the canonical representation, i.e. in terms of the contributions coming from

the two di↵erent time–orderings. To this end, we define

H↵r

W (k, p) = H↵r

W,1(k, p) +H↵r

W,2(k, p) , jr(k) =

Z
d3y e�ik·y ✏rµ(k) j

µ

em(0,y) , (1.5)

and perform the y0 integral,

H↵r

W,1(k, p) =

Z 0

�1
dty e

iE�ty h0|j↵W (0)ei(H�E�i")ty jr(k)|P (p)i

= �ih0|j↵W (0)
1

H + E� � E
jr(k)|P (p)i ,

H↵r

W,2(k, p) =

Z 1

0

dty e
iE�ty h0|jr(k)e�i(H�i")ty j↵W (0)|P (p)i

= �ih0|jr(k) 1

H � E�

j↵W (0)|P (p)i , (1.6)

where

E =

q
m2

P
+ p2 , E� = |k| , (1.7)

are the energies of the incoming meson and of the outgoing real photon.

2. The hadronic observable in Euclidean space

The crucial observation that makes the lattice calculation possible without particular di�cul-

ties is that the integral appearing in the definition of H↵r

W (k, p) can be rotated to Euclidean

we have

H↵r

W (k, p) =

✏rµ(k)

⇢
�i

FV (p · k)
mP

"µ↵��k�p� +


FA(p · k)

mP

+
fP
p · k

�
(p · k gµ↵ � pµk↵
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1.2. Canonical representation

In order to connect the matrix–element with euclidean correlators it is useful to express
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where
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q
m2

P
+ p2 , E� = |k| , (1.7)

are the energies of the incoming meson and of the outgoing real photon.

2. The hadronic observable in Euclidean space

The crucial observation that makes the lattice calculation possible without particular di�cul-

ties is that the integral appearing in the definition of H↵r

W (k, p) can be rotated to Euclidean

Hαr
W,2(k, p) = − i∫

∞

0
dty ⟨0 | jr(k)e−(H−Eγ)ty jα

W(0) |P(p)⟩

Hαr
W,1(k, p) = − i∫

0

−∞
dty ⟨0 | jα

W(0)e(H+Eγ−EP)ty jr(k) |P(p)⟩

42



 Form factors from Euclidean correlators

43

The physical form factors can be extracted directly from the Euclidean correlation 
functions (in the infinite-T limit)
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where er
µ(k) is the polarization vector of the photon with four-momentum k, jµ

em is the electro-
magnetic current, ja

W is the hadronic weak current, ja
W = V a �Aa = q̄1 (ga � gag5)q2, and ppp is the

momentum of the meson P with mass mP. To this amplitude, at O(aem), we have to add the diagram
in which the photon is emitted from the final-state charged lepton. The latter contribution can how-
ever, be computed in perturbation theory using the meson decay constant fP. The decomposition
of Har

W (k, p) in terms of form-factors has been discussed, for example, in refs. [8, 15]
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.

The last term in Eq. (2.2) corresponds to the point-like infrared-divergent contribution. This term
saturates the Ward Identity satisfied by Haµ

W (k, p), i.e. kµ Haµ
W (k, p) = ih0| ja

W (0)|P(p)i = fP pa .

The four form-factors H1,2 and FV,A are scalar functions of Lorentz invariants, the squared meson
mass m2

P, p · k and k2. Eq. (2.2) is valid for generic (off-shell) values of the photon momentum
and for generic choices of the polarisation vectors. By setting the photon on-shell, i.e. by taking
k2 = 0, at fixed meson mass the form factors are functions of p ·k only. A convenient dimensionless
variable is given by xg = 2p · k/m2

P. By choosing a physical basis for the polarization vectors such
that er · k = 0 we have
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(2.3)
Once the decay constant fP and the two SD axial and vector form-factors FA and FV are known, the
decay rate can be calculated by using the formulae given in [15] and in appendix B of [8].

3. Extracting the form factors from Euclidean correlators

The Euclidean correlation function corresponding to Eq. (2.1) is given by
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where k = (iEg ,kkk), with Eg = |kkk|, p = (iE, ppp) and
R

d3xxxP(0,xxx)eippp·xxx is the source of the pseudoscalar
meson with momentum ppp. The convergence of the integral over ty is ensured by the safe analytic
continuation from Minkowski to Euclidean space, because of the absence of intermediate states
lighter than the pseudoscalar meson. The physical form factors can be extracted directly from the
Euclidean correlation functions

Rar
W (t; ppp,kkk) =

2E
e�t(E�Eg ) hP(ppp)|P|0i

Car
W (t; ppp,kkk) = Har

W (k, p)+ · · · (3.2)

where hP(ppp)|P|0i is the matrix element of the operator P between the vacuum and the meson state
and the dots represent sub-leading exponentials. It is useful to note that, in order to separate the

2

P

e−t(EP−Eγ)

The numerical ratios  are expected to exhibit plateaux for , 
where exponentially-suppressed contributions can be neglected. In that region the 
above ratios give access to matrix elements 

Rαr
W (t; p, k) 0 ≪ t ≪ T/2

Hαr
W (k, p)
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Figure 2: Examples of plateaux fits for the ratios RA(t,T/2) (left) and RV (t,T/2) (right).

For t � 0 we get the following numerical estimators for the form-factors

RA(t) =
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Eg eeer ^ ppp�E eeer ^ kkk

� j ! FV (xg) . (3.4)

At finite T , by using the formulae above which are valid for t > 0, we fit the ratios RA,V (t) by
searching a plateau in the region 0 ⌧ t ⌧ T/2 . We also exploit time-reversal symmetries to
include the plateaus of RA,V (t) obtained at t > T/2. The values of the meson energies and of the
matrix element hP(ppp)|P|0i needed to build these estimators are obtained from standard effective-
mass/residue analyses of pseudoscalar-pseudoscalar two-point functions. The pseudoscalar-axial
two-point function is used to extract the decay constants fP in order to separate FA from the point-
like contribution 2 fP/(mPxg).

4. Numerical results

All the results presented in this section are preliminary. We have used the gauge configurations
given in table II of ref. [13], produced with 2 + 1 + 1 twisted mass fermions at three different
values of the lattice spacing, a[fm] = 0.0085(36),0.00815(30),0.0619(18), with meson masses
in the range 250-1930 MeV. In total we have included 100 different combinations of momenta
obtained by assigning to each of the qi=0,t,s five different values; making the same assignements
for all choices of the quark masses. All the plots below correspond to the case of K and D(s)

mesons at unphysical values of the MS renormalised light-quark mass, mud(2 GeV) = 11.7 MeV,
and have been obtained from a simulation at a = 0.0619 fm. Thus the reference meson masses are

4

Real photon emissions in leptonic decays G. Martinelli

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45 50
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Figure 2: Examples of plateaux fits for the ratios RA(t,T/2) (left) and RV (t,T/2) (right).

For t � 0 we get the following numerical estimators for the form-factors

RA(t) =
mP

4p · k Â
r=1,2

Â
j=1,2

R jr
A (t; ppp,kkk)

e j
r

!


FA(xg)+
2 fP

mPxg

�
,

RV (t) =
mP

4 Â
r=1,2

Â
j=1,2

R jr
V (t; ppp,kkk)

i
�
Eg eeer ^ ppp�E eeer ^ kkk

� j ! FV (xg) . (3.4)

At finite T , by using the formulae above which are valid for t > 0, we fit the ratios RA,V (t) by
searching a plateau in the region 0 ⌧ t ⌧ T/2 . We also exploit time-reversal symmetries to
include the plateaus of RA,V (t) obtained at t > T/2. The values of the meson energies and of the
matrix element hP(ppp)|P|0i needed to build these estimators are obtained from standard effective-
mass/residue analyses of pseudoscalar-pseudoscalar two-point functions. The pseudoscalar-axial
two-point function is used to extract the decay constants fP in order to separate FA from the point-
like contribution 2 fP/(mPxg).

4. Numerical results

All the results presented in this section are preliminary. We have used the gauge configurations
given in table II of ref. [13], produced with 2 + 1 + 1 twisted mass fermions at three different
values of the lattice spacing, a[fm] = 0.0085(36),0.00815(30),0.0619(18), with meson masses
in the range 250-1930 MeV. In total we have included 100 different combinations of momenta
obtained by assigning to each of the qi=0,t,s five different values; making the same assignements
for all choices of the quark masses. All the plots below correspond to the case of K and D(s)

mesons at unphysical values of the MS renormalised light-quark mass, mud(2 GeV) = 11.7 MeV,
and have been obtained from a simulation at a = 0.0619 fm. Thus the reference meson masses are

4

arXiv:2006.05358



 Form factors from Euclidean correlators

44

RM123 & Soton Coll., arXiv:2006.05358

Within the electro-quenched approximation                            it is possible to

choose arbitrary values of the spatial momenta by using different spatial b.c. for 
the quark fields
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FIG. 2: Feynman’s diagrams representing the correlator C↵r
W (t, T/2;p,k) used in the numerical simulations to extract the form–factors,

see appendix B. The incoming meson is interpolated at fixed spatial momentum p by the pseudoscalar operator P placed at time 0,

the weak current is local and is placed at the generic time t while the photon propagator is interpolated by a wall-source at T/2 with

momentum k and there is a four–dimensional integral at y, 0  y0  T . The right-panel represents the time-reversed process and, by

periodicity, is equivalent to the left-panel. On a finite time lattice it icorresponds to the leading exponential behaviour of the correlator

when t > T/2.

2⇡✓0
L

2⇡✓t
L

2⇡✓s
L

FIG. 3: The diagram on the left represents the contributions to the correlators and, consequently, to the form–factors associated with

the possibility that the photon is emitted by sea–quarks. In our numerical simulations we have been working within the so–called

electroquenched approximation in which the sea–quarks are electrically neutral. In practice this means that in our numerical results we

have neglected the quark–disconnected contributions represented in the the left panel. The diagram on the right explains our choice of

the spatial boundary conditions. By treating the two propagators attached to the electromagnetic current (blue and red lines) as two

di↵erente flavours, having the same mass and electric charge but di↵erent boundary conditions, we managed to choose arbitrary values

for the meson and photon spatial momenta.

correlator originating from the possibility that the external real photon is emitted from sea–quarks. In this work we
have been using the so–called electroquenched approximation in which sea–quarks are electrically neutral. In practice
this means that we have neglected the contributions represented in the left–panel of Figure 3.

The quark–connected diagram in the right–panel of Figure 3 has been shown to explain the strategy used to set the
values of the spatial momenta. We exploited the fact that, by working within the electroquenched approximation,
i.e. in absence of the contributions illustrated in the left–panel of the figure, it is possible to choose arbitrary values
of the spatial momenta by using di↵erent spatial boundary conditions [16] for the quark fields. More precisely, we
set the boundary conditions for the “spectactor” quark, corresponding to the black line in the diagram, such that
 (x+ k̂L) = exp(2⇡ik̂ ·✓s/L) (x). Then we treated the two propagators that are connected with the electromagnetic
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current (the red and blue lines) as the results of the Wick contractions of two di↵erent fields having the same mass
and electric charge but satisfying di↵erent boundary conditions. This is possible at the price of accepting tiny
violations of unitarity that are exponentially suppressed with the volume (similar e↵ects are induced in any case by
the electroquenched approximation). By setting the boundary conditions as illustrated in the figure we have thus
been able to choose arbitrary (non–quantized) values for the meson and photon spatial momenta,

p =
2⇡

L
(✓0 � ✓s) , k =

2⇡

L
(✓0 � ✓t) , (17)

by tuning the real three–vectors ✓0,t,s.

The numerical results presented in the following sections have been obtained by setting the non–zero components of
the spatial momenta along the third–direction, i.e.

p = (0, 0, |p|) , k = (0, 0, E�) . (18)

With this particular choice of the kinematical configuration a convenient basis for the polarization vectors of the
photon (see appendix B for more details) is the one in which the two physical polarization vectors are given by

✏µ
1 =

✓
0, � 1p

2
, � 1p

2
, 0

◆
, ✏µ

2 =

✓
0,

1p
2
, � 1p

2
, 0

◆
, (19)

while the unphysical polarization vectors vanish identically, ✏µ
0 = ✏µ

3 = 0. Notice that in this basis we have

✏r · p = ✏r · k = 0 , (20)

and, consequently,

Hir
A (k, p) =

✏i
r mP

2
x�


FA +

2fP

mP x�

�
, Hir

V (k, p) =
i (E� ✏r ^ p � E ✏r ^ k)i

mP
FV . (21)

By using these formulae, we have built the following numerical estimators

RA(t) =
1

2mP

X

r=1,2

X

j=1,2

Rjr
A (t;p,k)

✏j
r

! GA(x�) =


x�FA(x�) +

2fP

mP

�
,

RV (t) =
mP

4

X

r=1,2

X

j=1,2

Rjr
V (t;p,k)

i (E� ✏r ^ p � E ✏r ^ k)j ! FV (x�) . (22)

for the form–factors that we have then fitted by searching for plateaus in the region 0 ⌧ t ⌧ T/2.

The ratios Rir
W (t, T/2;p,k) appearing in the previous expressions for the estimators, that we have evaluated separately

for the axial (W = A) and vector (W = V ) parts of the weak current, are the finite–T generalizations (see Eq. (B31))
of the ratios R↵r

W (t;p,k) defined above in Eq. (16). The values of the meson energies and of the matrix element hP |P |0i
needed to build these estimators have been obtained from standard e↵ective–mass/residue analyses of pseudoscalar–
pseudoscalar two–point functions. We also computed pseudoscalar–axial two–point functions from which we extracted
the decay constants fP on our data sets in order to be able to isolate the SD axial form factor FA from the point–like
contribution 2fP /(mP x�).

Before closing this section we want to stress a very important issue associated with cuto↵ e↵ects. At finite lattice
spacing the axial form factor is constrained, as in the continuum (see Eq. (4)), by an exact lattice Ward Identity (see
appendix C). This however does not exclude the presence of cuto↵ e↵ects in Eqs. (22). These are terms of O(a2) and
include also contributions of O(a2x�). At finite lattice spacing Eqs. (22) reads

GA(x�) = x�

⇥
FA(x�) + a2�FA(x�)

⇤
+

2

mP

�
fP + a2�fP

�
+ · · · , (23)

where the dots represent higher orders in a2 while the quantities �FA and �fP depend upon the parameters of the
theory, including light and heavy quark masses, and upon ⇤QCD. The crucial point to be noticed is the presence of the
term a2�fP that appears, in spite of the exact lattice Ward Identity, since the constant term is not simply 2fP /mP

where fP and mP are the quantities extracted from the axial–pseudoscalar lattice correlators at finite lattice spacing.
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Before closing this section we want to stress a very important issue associated with cuto↵ e↵ects. At finite lattice
spacing the axial form factor is constrained, as in the continuum (see Eq. (4)), by an exact lattice Ward Identity (see
appendix C). This however does not exclude the presence of cuto↵ e↵ects in Eqs. (22). These are terms of O(a2) and
include also contributions of O(a2x�). At finite lattice spacing Eqs. (22) reads
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where the dots represent higher orders in a2 while the quantities �FA and �fP depend upon the parameters of the
theory, including light and heavy quark masses, and upon ⇤QCD. The crucial point to be noticed is the presence of the
term a2�fP that appears, in spite of the exact lattice Ward Identity, since the constant term is not simply 2fP /mP

where fP and mP are the quantities extracted from the axial–pseudoscalar lattice correlators at finite lattice spacing.
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current (the red and blue lines) as the results of the Wick contractions of two di↵erent fields having the same mass
and electric charge but satisfying di↵erent boundary conditions. This is possible at the price of accepting tiny
violations of unitarity that are exponentially suppressed with the volume (similar e↵ects are induced in any case by
the electroquenched approximation). By setting the boundary conditions as illustrated in the figure we have thus
been able to choose arbitrary (non–quantized) values for the meson and photon spatial momenta,

p =
2⇡

L
(✓0 � ✓s) , k =

2⇡

L
(✓0 � ✓t) , (17)

by tuning the real three–vectors ✓0,t,s.

The numerical results presented in the following sections have been obtained by setting the non–zero components of
the spatial momenta along the third–direction, i.e.

p = (0, 0, |p|) , k = (0, 0, E�) . (18)

With this particular choice of the kinematical configuration a convenient basis for the polarization vectors of the
photon (see appendix B for more details) is the one in which the two physical polarization vectors are given by
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for the form–factors that we have then fitted by searching for plateaus in the region 0 ⌧ t ⌧ T/2.

The ratios Rir
W (t, T/2;p,k) appearing in the previous expressions for the estimators, that we have evaluated separately

for the axial (W = A) and vector (W = V ) parts of the weak current, are the finite–T generalizations (see Eq. (B31))
of the ratios R↵r

W (t;p,k) defined above in Eq. (16). The values of the meson energies and of the matrix element hP |P |0i
needed to build these estimators have been obtained from standard e↵ective–mass/residue analyses of pseudoscalar–
pseudoscalar two–point functions. We also computed pseudoscalar–axial two–point functions from which we extracted
the decay constants fP on our data sets in order to be able to isolate the SD axial form factor FA from the point–like
contribution 2fP /(mP x�).

Before closing this section we want to stress a very important issue associated with cuto↵ e↵ects. At finite lattice
spacing the axial form factor is constrained, as in the continuum (see Eq. (4)), by an exact lattice Ward Identity (see
appendix C). This however does not exclude the presence of cuto↵ e↵ects in Eqs. (22). These are terms of O(a2) and
include also contributions of O(a2x�). At finite lattice spacing Eqs. (22) reads
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where the dots represent higher orders in a2 while the quantities �FA and �fP depend upon the parameters of the
theory, including light and heavy quark masses, and upon ⇤QCD. The crucial point to be noticed is the presence of the
term a2�fP that appears, in spite of the exact lattice Ward Identity, since the constant term is not simply 2fP /mP

where fP and mP are the quantities extracted from the axial–pseudoscalar lattice correlators at finite lattice spacing.
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contribution 2fP /(mP x�).
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where the dots represent higher orders in a2 while the quantities �FA and �fP depend upon the parameters of the
theory, including light and heavy quark masses, and upon ⇤QCD. The crucial point to be noticed is the presence of the
term a2�fP that appears, in spite of the exact lattice Ward Identity, since the constant term is not simply 2fP /mP

where fP and mP are the quantities extracted from the axial–pseudoscalar lattice correlators at finite lattice spacing.
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for the form–factors that we have then fitted by searching for plateaus in the region 0 ⌧ t ⌧ T/2.
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W (t;p,k) defined above in Eq. (16). The values of the meson energies and of the matrix element hP |P |0i
needed to build these estimators have been obtained from standard e↵ective–mass/residue analyses of pseudoscalar–
pseudoscalar two–point functions. We also computed pseudoscalar–axial two–point functions from which we extracted
the decay constants fP on our data sets in order to be able to isolate the SD axial form factor FA from the point–like
contribution 2fP /(mP x�).

Before closing this section we want to stress a very important issue associated with cuto↵ e↵ects. At finite lattice
spacing the axial form factor is constrained, as in the continuum (see Eq. (4)), by an exact lattice Ward Identity (see
appendix C). This however does not exclude the presence of cuto↵ e↵ects in Eqs. (22). These are terms of O(a2) and
include also contributions of O(a2x�). At finite lattice spacing Eqs. (22) reads
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where the dots represent higher orders in a2 while the quantities �FA and �fP depend upon the parameters of the
theory, including light and heavy quark masses, and upon ⇤QCD. The crucial point to be noticed is the presence of the
term a2�fP that appears, in spite of the exact lattice Ward Identity, since the constant term is not simply 2fP /mP

where fP and mP are the quantities extracted from the axial–pseudoscalar lattice correlators at finite lattice spacing.
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of the ratios R↵r
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pseudoscalar two–point functions. We also computed pseudoscalar–axial two–point functions from which we extracted
the decay constants fP on our data sets in order to be able to isolate the SD axial form factor FA from the point–like
contribution 2fP /(mP x�).

Before closing this section we want to stress a very important issue associated with cuto↵ e↵ects. At finite lattice
spacing the axial form factor is constrained, as in the continuum (see Eq. (4)), by an exact lattice Ward Identity (see
appendix C). This however does not exclude the presence of cuto↵ e↵ects in Eqs. (22). These are terms of O(a2) and
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where the dots represent higher orders in a2 while the quantities �FA and �fP depend upon the parameters of the
theory, including light and heavy quark masses, and upon ⇤QCD. The crucial point to be noticed is the presence of the
term a2�fP that appears, in spite of the exact lattice Ward Identity, since the constant term is not simply 2fP /mP

where fP and mP are the quantities extracted from the axial–pseudoscalar lattice correlators at finite lattice spacing.
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FIG. 4: The blue circles represent FA(x�) + 2fP /(mPx�), extracted directly from RA(t), as a

function of x� for the K meson (left) and for the Ds meson (right). The red squares represent

the point-like contribution given by 2fP /(mPx�). The data are taken from the ensemble D15.48 of

Ref. [15].

In Fig. 4 we plot FA(x�)+2fP /(mPx�), the sum of the point-like and SD axial form factors which

is extracted directly from the correlation functions using RA(t) (see Eq. (21)), as a function of x�

for the K (left panel) and the Ds (right panel) mesons. The point-like contribution, 2fP /(mPx�),

dominates the axial form factor in the full physical range of photon energies and is overwhelming

at small x� . Using the decay constant and mass, computed in the standard way from the two-point

functions, we can in principle subtract the point-like term and extract FA(x�). However, this turns

out to be very di�cult because of the possible presence of discretisation e↵ects which cannot be

excluded by the WI of the lattice action. Moreover, these lattice artefacts diverge as x� ! 0. We

now propose a non-perturbative method to eliminate this problem.

At finite lattice spacing the axial form factor is constrained, as in the continuum (see Eq. (4)),

by an exact lattice WI

2 sin(kµa/2)

a
H↵µ

L
(k,p) = �h0|j↵A(0)|P (p)i = �fL

P p
↵

L , (23)

that is true at all orders in the lattice spacing a (see AppendixC). The label L here, and in the

remainder of this section, stands for “Lattice” as the discussion concerns the Ward Identity in a

discrete space-time. It should not be confused with the spatial extent of the Lattice. This however

does not exclude the presence of cuto↵ e↵ects in Eq. (21). These are terms of O(a2) 1 and, in

1 We assume here that we are using a lattice discretisation in which the leading artefacts are O(a2). For Wilson

Fermions in which they are O(a), the discussion has to be modified accordingly.
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 Form factors: results

FP
A,V(xγ) = CP

A,V + DP
A,V xγ

22

continuum limit and to physical quark masses. The discretisation artefacts, which include ones of

O(m2
c a

2), while approximately of the expected size, appear to be relatively large because the form

factors are small. In fact the form factors at the three lattice spacings we have at our disposal are

fully consistent, within our uncertainties, with a linear behaviour in a2, as illustrated in Fig. 12

where the form factors at x� = 0.2 are presented as a function of the lattice spacing. The points

in the figure are obtained after extrapolation to physical quark masses either using a polynomial

of pole ansatz corresponding to Eqs. (35) or (36) at fixed lattice spacing. In this first study, with

only three lattice spacings at our disposal, we are unable to include corrections of higher order in

a2 beyond those present in Eqs. (35) and (36). In AppendixD we have estimated their e↵ects in

the uncertainties of our final results for the form factors.

We also study our physical results (i.e those obtained after the continuum and chiral extrapo-

lations) as a function of x� by fitting them to the following linear expressions:

FP

A,V (x�) = CP

A,V +DP

A,V x� , (37)

where P represents each of the pseudoscalar mesons, ⇡, K, D and Ds.

For the axial form factors we find:

C⇡

A = 0.010± 0.003 ; D⇡

A = 0.0004± 0.0006 ; ⇢C⇡
A,D

⇡
A
= �0.419 ;

CK

A = 0.037± 0.009 ; DK

A = �0.001± 0.007 ; ⇢
C

K
A ,D

K
A
= �0.673 ;

CD

A = 0.109± 0.009 ; DD

A = �0.10± 0.03 ; ⇢
C

D
A ,D

D
A
= �0.557 ;

CDs
A

= 0.092± 0.006 ; DDs
A

= �0.07± 0.01 ; ⇢
C

Ds
A ,D

Ds
A

= �0.745 . (38)

and for the vector form factors we obtain

C⇡

V = 0.023± 0.002 ; D⇡

V = �0.0003± 0.0003 ; ⇢C⇡
V ,D

⇡
V
= �0.570 ;

CK

V = 0.12± 0.01 ; DK

V = �0.02± 0.01 ; ⇢
C

K
V ,D

K
V
= �0.714 ;

CD

V = �0.15± 0.02 ; DD

V = 0.12± 0.04 ; ⇢
C

D
V ,D

D
V
= �0.580 ;

CDs
V

= �0.12± 0.02 ; DDs
V

= 0.16± 0.03 ; ⇢
C

Ds
V ,D

Ds
V

= �0.900 . (39)

In Eqs. (38) and (39), for each of the C’s and D’s, ⇢C,D is the correlation between them, defined

by

⇢C,D =

P
i
(Ci � µC)(Di � µD)pP

i
(Ci � µC)2

pP
i
(Di � µD)2

, µC =
1

N

X

i

Ci , µD =
1

N

X

i

Di , (40)

where Ci and Di are the jackknife samples and the sum runs over all the jackknifes following the

procedure in Appendix A of Ref. [29].
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continuum limit and to physical quark masses. The discretisation artefacts, which include ones of

O(m2
c a

2), while approximately of the expected size, appear to be relatively large because the form

factors are small. In fact the form factors at the three lattice spacings we have at our disposal are

fully consistent, within our uncertainties, with a linear behaviour in a2, as illustrated in Fig. 12

where the form factors at x� = 0.2 are presented as a function of the lattice spacing. The points

in the figure are obtained after extrapolation to physical quark masses either using a polynomial

of pole ansatz corresponding to Eqs. (35) or (36) at fixed lattice spacing. In this first study, with

only three lattice spacings at our disposal, we are unable to include corrections of higher order in

a2 beyond those present in Eqs. (35) and (36). In AppendixD we have estimated their e↵ects in

the uncertainties of our final results for the form factors.

We also study our physical results (i.e those obtained after the continuum and chiral extrapo-

lations) as a function of x� by fitting them to the following linear expressions:

FP

A,V (x�) = CP

A,V +DP

A,V x� , (37)

where P represents each of the pseudoscalar mesons, ⇡, K, D and Ds.

For the axial form factors we find:

C⇡

A = 0.010± 0.003 ; D⇡

A = 0.0004± 0.0006 ; ⇢C⇡
A,D

⇡
A
= �0.419 ;

CK

A = 0.037± 0.009 ; DK

A = �0.001± 0.007 ; ⇢
C

K
A ,D

K
A
= �0.673 ;

CD

A = 0.109± 0.009 ; DD

A = �0.10± 0.03 ; ⇢
C

D
A ,D

D
A
= �0.557 ;

CDs
A

= 0.092± 0.006 ; DDs
A

= �0.07± 0.01 ; ⇢
C

Ds
A ,D

Ds
A

= �0.745 . (38)

and for the vector form factors we obtain

C⇡

V = 0.023± 0.002 ; D⇡

V = �0.0003± 0.0003 ; ⇢C⇡
V ,D

⇡
V
= �0.570 ;

CK

V = 0.12± 0.01 ; DK

V = �0.02± 0.01 ; ⇢
C

K
V ,D

K
V
= �0.714 ;

CD

V = �0.15± 0.02 ; DD

V = 0.12± 0.04 ; ⇢
C

D
V ,D

D
V
= �0.580 ;

CDs
V

= �0.12± 0.02 ; DDs
V

= 0.16± 0.03 ; ⇢
C

Ds
V ,D

Ds
V

= �0.900 . (39)

In Eqs. (38) and (39), for each of the C’s and D’s, ⇢C,D is the correlation between them, defined

by

⇢C,D =

P
i
(Ci � µC)(Di � µD)pP

i
(Ci � µC)2

pP
i
(Di � µD)2

, µC =
1

N

X

i

Ci , µD =
1

N

X

i

Di , (40)

where Ci and Di are the jackknife samples and the sum runs over all the jackknifes following the

procedure in Appendix A of Ref. [29].
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We present a nonperturbative lattice calculation of the form factors which contribute to the amplitudes
for the radiative decays P → lν̄lγ, where P is a pseudoscalar meson and l is a charged lepton. Together
with the nonperturbative determination of the corrections to the processes P → lν̄l due to the exchange of
a virtual photon, this allows accurate predictions at OðαemÞ to be made for leptonic decay rates for
pseudoscalar mesons ranging from the pion to the Ds meson. We are able to separate unambiguously and
nonpertubatively the pointlike contribution, from the structure-dependent, infrared-safe, terms in the
amplitude. The fully nonperturbative OðaÞ improved calculation of the inclusive leptonic decay rates will
lead to the determination of the corresponding Cabibbo-Kobayashi-Maskawa matrix elements also at
OðαemÞ. Prospects for a precise evaluation of leptonic decay rates with emission of a hard photon are also
very interesting, especially for the decays of heavy D and B mesons for which currently only model-
dependent predictions are available to compare with existing experimental data.

DOI: 10.1103/PhysRevD.103.014502

I. INTRODUCTION

The unitarity of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix is one of the most precise tests of the
Standard Model. Indeed, CKM unitarity may rule out many
theoretically well-motivated models for new physics and
put severe constraints on the energy scale where new
phenomena might occur, well beyond the range accessible
to direct experimental searches. In this respect, leptonic
decay rates of light and heavy pseudoscalar mesons are
essential ingredients for the extraction of the CKM matrix
elements. A first-principles calculation of these quantities
requires nonperturbative accuracy and hence numerical
lattice simulations. Moreover, in order to fully exploit
the presently available experimental information and to

perform the next generation of flavor-physics tests, OðαemÞ
electromagnetic corrections must be included. In this
endeavor, the radiative leptonic decays P → lν̄lðγÞ (where
P is a negatively charged pseudoscalar meson, l a lepton,
ν̄l the corresponding antineutrino, and γ a photon) are
particularly important; see [1].
Knowledge of the radiative leptonic decay rate in the

region of small (soft) photon energies is required in order to
properly define the infrared-safe measurable decay rate for
the process P → lν̄lðγÞ. Indeed, according to the well-
known Bloch-Nordsieck mechanism [2], the integral of the
radiative decay rate in the phase space region correspond-
ing to soft photons must be added to the decay rate with no
real photons in the final states (the so-called virtual rate) in
order to cancel infrared divergent contributions appearing
in unphysical quantities at intermediate stages of the
calculations.
On the one hand, in the limit of ultrasoft photon energy,

the radiative decay rate can be reliably calculated in an
effective theory in which the meson is treated as a pointlike
particle. This is a manifestation of the well-known

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 014502 (2021)

2470-0010=2021=103(1)=014502(29) 014502-1 Published by the American Physical Society

arXiv:2006.05358



49

Structure dependent electromagnetic
corrections

In this note we provide the expression for the di↵erential decay rate

d�1

dx�
=

d

dx�
�
⇣
P+ ! `+⌫`�

⌘
(1)

where, in rest frame of the initial meson, x� = 2E�/mP .
The starting point is the expression for the double di↵erential decay rate

d2�1/dx�dx`, which was obtained in Ref.[1] and it also reported in Eqs. (B12)
and (B13) of our paper [2]1. By expressing the rate as �1 = �pt

1 + �SD
1 +

�INT
1 , where the three terms correspond to the pointlike, structure-dependent

and interference contributions respectively, after integrating over the lepton
energy x` we find

4⇡

↵�tree
0

d�SD
1

dx�
=

m2
P

6f 2
P r2` (1� r2` )

2 [FV (x�)2 + FA(x�)2] fSD(x�)

4⇡

↵�tree
0

d�INT
1

dx�
= � 2mP

fP (1� r2` )
2

h
FV (x�) f INT

V (x�) + FA(x�) f INT
A (x�)

i
(2)

where FV,A(x�) are the vector and axial form factors, r` = m`/mP and the
functions fSD(x�) and f INT

V,A (x�) in Eq. (2) are given by

fSD(x�) = x3
�

"
(2� 2x� + r2` ) (1� x� � r2` )

2

(1� x�)2

#

f INT
V (x�) = x2

�

"
1� x� � r2`

1� x�
� log

 
1� x�

r2`

!#

f INT
A (x�) = x�

"
1� 3x� + 2x2

� + r2`x� � r4`
1� x�

+ (x� � 2r2` ) log

 
1� x�

r2`

!#

.

(3)
Note that a term proportional to FV (x�) · FA(x�), which appears in the
double di↵erential decay rate d2�SD

1 /dx�dx`, gives a vanishing contribution
to the integral over x` and does not enter in d�SD

1 /dx� of Eq. (2). The total

1I have checked the correctness of these results.

1

�������

ChPT O(e2p4) lattice

0.1 0.2 0.3 0.4
x�

5.×10-10

1.×10-9

1.5×10-9

2.×10-9

2.5×10-9

dR1SD(� � ����)/dx�

�������
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0.1 0.2 0.3 0.4
x�

-2.×10-7

-1.×10-7
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dR1INT(� � ����)/dx�

�������
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0.00006

dR1SD(K � ����)/dx�

�������
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-0.00010
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10

+
rE(4� 4r2` � rE)

(1� r2` )
2

log(r2` )� 4
1 + r

2
`

1� r2`

Li2(rE) +
rE

2

22� 28r2` � 3rE
(1� r2` )

2

o
, (39)

where rE ⌘ 2�E�/mP and Li2(x) = �
R x
0 du log(1� u)/u.

Using the vector and axial form factors given in Eqs. (13) - (17) we have calculated the (totally

inclusive) contributions �R
SD
1 (�E

max
� ) and �R

INT
1 (�E

max
� ) for the processes K(⇡) ! µ(e)⌫�,

where �E
max
� = mP (1� r

2
` )/2. Our non-perturbative results are shown in Table III together with

the corresponding contribution �Rpt(�E
max
� ) from Eq. (39). For the ratio (mP /fP ) appearing in

Eqs. (37) - (38) we take the values (139.6 MeV/130.4 MeV) and (493.7 MeV/156.1 MeV) for P = ⇡

and K, respectively 2.

⇡e2[�] ⇡µ2[�] Ke2[�] Kµ2[�]

�R0
(⇤) 0.0411 (19) (⇤) 0.0341 (10)

�Rpt(�E
max
� ) �0.0651 �0.0258 �0.0695 �0.0317

�R
SD
1 (�E

max
� ) 5.4 (1.0)⇥ 10�4 2.6 (5)⇥ 10�10 1.19 (14) 2.2 (3)⇥ 10�5

�R
INT
1 (�E

max
� ) �4.1 (1.0)⇥ 10�5

�1.3 (1.5)⇥ 10�8
�9.2 (1.3)⇥ 10�4

�6.1 (1.1)⇥ 10�5

�E
max
� (MeV) 69.8 29.8 246.8 235.5

(⇤) Not yet evaluated by numerical lattice QCD+QED simulations.

TABLE III. Values of the contributions �R0, �Rpt(�E
max
� ), �RSD

1 (�E
max
� ) and �R

INT
1 (�E

max
� ), defined in

Eqs. (35)-(38), evaluated using the lattice results of Refs. [7, 8] for the decays K(⇡) ! µ(e)⌫[�]. In the last

row the values of the maximum photon energy, �E
max
� , are also shown for each decay process.

In the same Table we also show the values of the SD virtual contributions �R0(⇡µ2) and

�R0(Kµ2), which can be derived from the results of Ref. [7]. There, the combination �R0 +

�Rpt(�E
max
� ) was evaluated for K(⇡) ! µ⌫[�] decays, obtaining

�R0(⇡µ2) + �Rpt(⇡µ2[�];�E
max
� ) = 0.0153 (19) , (40)

�R0(Kµ2) + �Rpt(Kµ2[�];�E
max
� ) = 0.0024 (10) . (41)

For decays into a final-state electron, the lattice determinations of the SD virtual contributions

�R0(⇡e2) and �R0(Ke2), which are currently missing in Table III, are in progress.

From Table III it can be seen that for radiative decays into muons the SD and INT contributions

are negligible compared to the pt one, and, therefore, the results (40) and (41) represent respectively

2
For the kaon the value fK = 156.1 MeV is taken from Ref. [7] and is based on the latest FLAG average [21] for

fK+ corrected for strong SU(2) breaking e↵ects.

Leptonic decays at O(α):  RESULTS

Γ(ΔE) = Γ(tree) [1 + δR0 + δRpt(ΔE)+δRSD
1 (ΔE) + δRINT

1 (ΔE)]

δRπμ2
= 0.0153 (19) δRKμ2

= 0.0024 (10)
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22

region E� Ee ✓e� �R
exp,i

�R
pt,i

(�R
exp,i ��R

pt,i
) �R

SD,i
(�R

th,i ��R
pt,i

) ChPT

A > 50 > 50 > 40
�

2.614± 0.021 0.385 2.229± 0.021 1.94± 0.40 1.93± 0.40 2.97± 0.82

B > 50 > 10 > 40
�

14.46± 0.22 11.66 2.80± 0.22 3.01± 0.54 2.93± 0.54 4.43± 0.92

C > 10 > 50 > 40
�

37.69± 0.46 35.08 2.61± 0.46 5.07± 1.03 5.07± 1.04 7.75± 2.07

O > 10 > me > 40
�

73.86± 0.54 72.26 1.60± 0.54 6.87± 1.26 6.70± 1.26 10.13± 2.11

TABLE IX. Values of the PIBETA experimental results �R
exp,i [13], of the pt contribution �R

pt,i, of the

quantity (�R
exp,i

��R
pt,i) and of the theoretical predictions �R

SD,i and (�R
th,i

��R
pt,i), evaluated with

the vector and axial form factors of Ref. [8] given in Eqs. (13) - (17), corresponding to the four kinematical

regions adopted in the PIBETA experiment on ⇡
+
! e

+
⌫� decays. Energies and branching ratios are given

in units of MeV and 10�8, respectively. In the kinematical region A the constraint ✓e� > 40� is automatically

satisfied [13]. The last column shows the prediction of ChPT at order O(e2p4), based on the vector and axial

form factors given in Eq. (52).
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FIG. 5. Comparison of the PIBETA experimental data [13] with the pt contribution subtracted, (�R
exp,i
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pt,i) (red circles), with the theoretical predictions (�R

th,i
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pt,i) (blue squares), evaluated with the

vector and axial form factors of Ref. [8] given in Eqs. (13) - (17), for the four kinematical regions adopted in

the PIBETA experiment on ⇡
+
! e

+
⌫� decays. The green diamonds correspond to the prediction of ChPT

at order O(e2p4), based on the vector and axial form factors given in Eq. (52).

the impact of O(e2p6) terms was estimated using also the large Nc expansion within ChPT and

found to be at the level of about 15% on the axial form factor. Such a contribution led to a better
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the impact of O(e2p6) terms was estimated using also the large Nc expansion within ChPT and

found to be at the level of about 15% on the axial form factor. Such a contribution led to a better

13

bin E� (MeV) pe (MeV) �R
exp,i ⇥ 10

6
�R

SD,i ⇥ 10
6
�R

th,i ⇥ 10
6

exp / th ChPT

1 10 - 50 > 200 0.94± 0.30± 0.03 0.26± 0.04 1.25± 0.04 0.75± 0.24 1.13± 0.03

2 50 - 100 > 200 2.03± 0.22± 0.02 2.26± 0.30 2.28± 0.30 0.89± 0.15 1.44± 0.36

3 100 - 150 > 200 4.47± 0.30± 0.03 5.06± 0.67 5.07± 0.67 0.88± 0.13 3.50± 0.96

4 150 - 200 > 200 4.81± 0.37± 0.04 6.00± 0.78 6.00± 0.78 0.80± 0.12 4.46± 1.25

5 200 - 250 > 200 2.58± 0.26± 0.03 2.85± 0.38 2.85± 0.38 0.91± 0.15 2.25± 0.63

1-5 10 - 250 > 200 14.83± 0.66± 0.13 16.43± 2.12 17.43± 2.12 0.85± 0.11 12.79± 3.24

TABLE IV. Values of the KLOE experimental data �R
exp,i [9] and of the theoretical predictions �R

SD,i

and �R
th,i, evaluated with the vector and axial form factors of Ref. [8] given in Eqs. (13)-(17), tabulated

in the 5 bins of the photon’s energy adopted by the KLOE experiment on K ! e⌫� decays. The seventh

column is the ratio between the experimental data and our theoretical predictions. In the fourth column the

first error is statistical and the second one is systematic. The last column shows the prediction of ChPT at

order O(e2p4), based on the vector and axial form factors given in Eq. (52).
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FIG. 1. Left: comparison of the KLOE experimental data �R
exp,i [9] (red circles) with the theoretical predic-

tions �R
th,i, (blue squares) evaluated with the vector and axial form factors of Ref. [8] given in Eqs. (13) -

(17), for the 5 bins (see Table IV). The green diamonds correspond to the prediction of ChPT at order

O(e2p4), based on the vector and axial form factors given in Eq. (52). Right: Comparison of the form-factor

F
+(x�) extracted by the KLOE collaboration in Ref. [9] and the theoretical prediction from Eqs. (13) - (17).

In Table IV the last column contains the predictions of ChPT at order O(e2p4), i.e. based on

16

0.0

4.0 10-5

8.0 10-5

1.2 10-4

-1.00 -0.95 -0.90 -0.85 -0.80

E787

SD+ + INT+

SD- + INT-

lattice
d 

(R
 - 

Rpt
) 

/ 
d 

co
s(
θ µ

 γ
)

cos(θ
µ γ

)

 K+      µ+ ν γ

x
γ

max(θ
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FIG. 2. Comparison of the E787 experimental data after the pt contribution has been subtracted, d(Rexp
�

R
pt)/d cos(✓µ�) (red circles) [10], with the theoretical predictions d(Rth

� R
pt)/d cos(✓µ�) (blue squares),

evaluated using the lattice form factors of Ref. [8] given in Eqs. (13)-(17). The dashed and dotted lines

correspond to the contributions d(RSD+

+R
INT+

)/d cos(✓µ�) and d(RSD�
+R

INT�
)/d cos(✓µ�) respectively.

The upper horizontal axis shows the maximum value of x� , xmax
� (✓µ�), allowed by the value of the angle ✓µ�

taking into account the kinematical cuts of the E787 experiment (see Eq. (55)).

Note that, though generally small, the relative contribution of SD�+INT�, which depends

on the form factor F
�(x�), becomes more important as cos(✓µ�) increases (i.e. as x� decreases),

reaching about 20 - 30% of the term SD++INT+ at the lowest available values of x� .

We remind the reader that, as shown in Sec. IV, our lattice form factor F+(x�) leads to a good

description of the KLOE data [9]. A consequence of this is that the tension between our theoretical

predictions and the E787 data which is visible at large x� in Fig. 2 is not unexpected because

of a tension between the two experiments. The KLOE collaboration has estimated F
+(x� = 1)

to be equal to 0.125 ± 0.007stat ± 0.001syst [9], while the estimate of E787, assuming a constant

form factor, is 0.165 ± 0.007stat ± 0.011syst [10]. The di↵erence is at the level of about 3 standard

deviations (see also the discussion in Sec.VII below). Our theoretical prediction for this quantity

is F+(x� = 1) = 0.1362± 0.0096.

Thus, further experimental investigations of the form factor F
+(x�) in radiative kaon decays

into electrons and muons are required. In particular, an investigation of the decay Ke2� at large

 Comparison with experimental data

Tensions may be due to the presence of NP, 
such as flavour changing interactions beyond 

the V-A couplings and non-universal 
corrections to lepton couplings

R. Frezzotti et al., arXiv:2012.02120



The emission of a real hard photon removes the  helicity suppression (mℓ /MB)2

This is the simplest process that probes (for large ) the first inverse moment of the 
B-meson LCDA

Eγ

1
λB(μ) = ∫

∞

0

dω
ω

ΦB+(ω, μ)

 is an important input in QCD-factorization predictions for non-leptonic B decays 
but is poorly known
λB

B� ! `�⌫̄�

• Adding a (hard) photon removes the (m`/mB)
2
helicity suppression.

• This is the simplest decay that (for large E�) probes the first inverse

moment of the B-meson light-cone distribution amplitude,

1/�B =

Z 1

0

�B+(!)
!

d!.

�B is an important input in QCD-factorization predictions for nonleptonic

B decays and is poorly known.

[See, for example, M. Beneke, V. Braun, Y. Ji, Y.-B. Wei, arXiv:1804.04962/JHEP2018;

M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, arXiv:hep-ph/9905312/PRL 1999]

• Belle: B(B
�
! `�⌫̄�, E� > 1 GeV) < 3.0⇥ 10

�6
SM: O(10

�6
)

[arXiv:1810.12976/PRD2018]

ν̄ℓ

M. Beneke, V. M. Braun, Y. Ji, Y.-B. Wei, 2018

Radiative corrections to leptonic B-meson decays

B− → ℓ−ν̄ℓγ

Belle 2018:                    ℬ(B− → ℓ−ν̄ℓγ, Eγ > 1 GeV) < 3.0 ⋅ 10−6 λB > 0.24 GeV
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FIG. 1: Feynman diagrams that contain the power-enhanced
electromagnetic correction. Symmetric diagrams with order
of vertices on the leptonic line interchanged are not displayed.

in the effective weak interaction Lagrangian

L∆B=1 =
4GF√

2

10
∑

i=1

CiQi + h.c. , (7)

with the effective operators Qi as defined in Ref. [13].
The effective short-distance coefficients [14, 15]

Ceff
7 = C7 −

C3

3
− 4C4

9
− 20C5

3
− 80C6

9
(8)

Ceff
9 (q2) = C9 + Y (q2) (9)

account for the quark-loop induced contributions. The
relevant Feynman diagrams are shown in Fig. 1.

An important observation on Eq. (5) is that the non-
perturbative strong-interaction physics is no longer con-
tained in the B-meson decay constant fBq

alone. Rather,
the exchange of an energetic photon between the lepton
pair and the spectator antiquark q̄ probes correlations
between the constituents in the B meson separated at
large but light-like distances. The corresponding strong-
interaction physics is parameterized by the inverse mo-
ment of the B-meson light-cone distribution amplitude
(LCDA) λB , introduced in Ref. [16],

1

λB(µ)
≡

∫

∞

0

dω

ω
φB+(ω, µ), (10)

σn(µ)

λB(µ)
≡

∫

∞

0

dω

ω
lnn

µ0

ω
φB+(ω, µ) (11)

and the first two inverse-logarithmic moments, which we
define as in Ref. [12] with fixed µ0 = 1 GeV. These pa-
rameters have frequently appeared in other exclusive B-
meson decays. In the numerical analysis below we shall
adopt [12] λB(1 GeV) = (275 ± 75) MeV, σ1(1 GeV) =
1.5 ± 1, and σ2(1 GeV) = 3 ± 2. The non-locality of
q̄b annihilation due to the photon interaction removes a
suppression factor of the local annihilation process. The

enhancement of the electromagnetic correction by a fac-
tor mB/ΛQCD in Eq. (5) arises from

mB

∫

∞

0

dω

ω
φB+(ω) ln

k ω ∼ mB

λB
× σk . (12)

There is a further single-logarithmic enhancement of or-
der lnmbΛQCD/m2

µ ∼ 5 for the Ceff
9 term, and even a

double-logarithmic enhancement of the Ceff
7 term.

We obtained Eq. (5) in two different ways. First,
from a standard computation of QED corrections to
the four-point amplitude with two external lepton lines,
one heavy-quark and one light-quark line, and second,
from a method-of-region computation [17] in the frame-
work of soft-collinear effective theory (SCET) [18, 19].
The second method is instructive as it reveals the ori-
gin of the enhancement from the hard-collinear virtuality
O(mbΛQCD) of the spectator-quark propagator. A fur-
ther single-logarithmic enhancement arises from the con-
tribution of both hard-collinear and collinear (virtuality
Λ2
QCD ∼ m2

!) photon and lepton virtuality. The dou-

ble logarithm in the Ceff
7 term is caused by an endpoint-

singularity as u → 0 in the hard-collinear and collinear
convolution integral for the box diagrams, whereby the
hard photon from the electromagnetic dipole operator
becomes hard-collinear. The singularity is cancelled by
a soft contribution, where the leptons in the final state
interact with each other through the exchange of a soft
lepton. The relevance of soft-fermion exchange is inter-
esting by itself since it is beyond the standard analysis of
logarithmically enhanced terms in QED. We shall there-
fore return to a full analysis within SCET in a detailed
separate paper.

We now proceed to the numerical evaluation of the
power-enhanced QED correction. Let us denote mB

times the curly bracket in Eq. (5) by ∆QED. Since the
scalar %̄% term in the amplitude A does not interfere with
the pseudoscalar tree-level amplitude, the QED correc-
tion can be included in the expression for the tree-level
Bs → %+%− branching fraction [26],

τBq
m3

Bq
f2
Bq

8π
|N |2 m2

!

m2
Bq

√

1− 4m2
!

m2
Bq

|C10|2 , (13)

by the substitution

C10 → C10 +
αem

4π
Q!Qq∆QED . (14)

We calculate the Wilson coefficients Ci(µb) entering
∆QED at the scale µb = 5GeV at next-to-next-to-leading
logarithmic accuracy in the renormalization-group evolu-
tion from the electroweak scale, evaluate the convolution
integrals in Eq. (5) with mb = 4.8GeV, and express them
in terms of λB(1GeV), σ1(1GeV), σ2(1GeV) specified
above. We then find

∆QED = (33− 119) + i (9− 23) (% = µ) , (15)

where the large range is entirely due to the independent
variation of the poorly known parameters of the B-meson
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Bq → ℓ+ℓ−(γ)

Enhancement of the virtual corrections by a factor  and by large logarithmsMB /ΛQCD

The real photon emission process is a clean probe of NP: sensitiveness to FV,A,TV,TA(Eγ)
M. Beneke, C. Bobeth, R. Szafron, 2019

QCD sum rules in HQET:    λB(1 GeV) = 0.46 (11) GeV
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Semileptonic decay amplitudes

K0 π+

d

s u

"−

ν"

K 0 → π +ℓ−ν ℓ

sπℓ = pπ + pℓ( )2
q = pK − pπ = pℓ + pν

K0

π+

"−

ν"

π pπ( ) sγ µu K pK( ) = f0 q
2( )MK

2 −Mπ
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q2
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q2
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dq2dsπℓ

= GF
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⎤
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FV corrections due to em rescatteringTo be addressed:

IR divergences cancel out

1/L corrections depend on df± dq2
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Conclusions and future perspectives

We have performed the FIRST lattice calculation (arXiv:1711.06537, 
arXiv:1904.08731, arXiv:2006.05358) of isospin-breaking corrections to 
light-meson leptonic decay rates

The inclusion of disconnected diagrams is mandatory for removing the qQED 
(quenched-QED) approximation 

Extensions to leptonic heavy-light meson decays and semileptonic Kl3 
decays are being targeted

Setting the lattice scale of our simulations with an hadron mass (e.g.        ) 
allows to predict Vud

MΩ


