Multigrid Methods for Chiral Fermions

Peter Boyle

® Lattice QCD and MCMC
* HMC

® New multigrid methods for chiral fermions



Monte Carlo Integration

Integration
/f(U)dU: Volx (f) ;  Vol= / du
JU JU

Monte Carlo Integration (x; uniform over compact domain)
() = 5 LA )
= — Xi
N5
Importance sampling: draw x; with positive normalised probability density P(x;)
1 f(X,')
fy=—
) N ; P(X,')

If |f(x;)| < P(x;) this may converge better.
NB: analogy to removing bias from fixing machine learned MC integrators

Variance reduction: if f is a good, cheap approximation for f

F(x) )~ F(x)
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Euclidean Path Integral

Pure gauge path integral

Importance sample: seek to distribute gluon configuratoins according to

1 / e Scll o(U)dU
Z Ju

P(U e=SclU]
)= JyeSelUldu
Calculate observables on each configuration
1
@)=y Low)

= Markov chain monte carlo:

This

10%0 degrees of freedom(!)
Sharply probability weight
Variance of 0(U) determines how many samples are required.
100-2000 samples typically good for 1% scale statistical errors

is observable dependent...



Markov chains

® Sequence of states generated by transition probability M(X — X') from X to X’
Rule depends only on X.

® Usually composed of proposal and acceptance probablities
M(X = X") = Pp(X = X")Pace(X — X')
® Design rule M(X — X’) to yield desired equilibrium probability distribution after many
transitionsPeq(X)

® Py must map to itself under of the transition rule:
Peg(X') = ZPeq(X)M(X - X')
X
® An ergodic update satisfying this and is a contration mapping and Markov transitions

converge on the desired equilibrium.

(Clear pedagogical review: Anthony Kennedy Nara lectures 2006)



Metropolis algorithms

Detailed balance property:
Peg(X)M(X = X') = Peg(X'YM(X' — X)
Sum over X to obtain

;Peq(X)M(X - X') :;Peq(X’)M(X’ — X) = Peg(X')

So Peq is a fixed point of the Markov process!

We can sample any probability distribution we desire with such an update.




Metropolis algorithms

Make the update combine proposal and acceptance probablities
M(X = X") = Pp(X = X")Pace(X — X')
detailed balance
Peg(X)Pp(X = X' )Pace(X = X') = Peg(X")Pp(X' = X)Pacc(X — X),
is satisfied with the Metropolis acceptance probability,

Peg(X")Pp(X' — X)

Pace(X — X') =Min(1, =22 P2 "7
acc (X — X') in(1, Peg(X)P,(X = X')

)

either P,ec(X = X') =1, or Pae(X' — X); considering cases leads to trivial proof.

Simplifies if P,(X' — X) = P,(X — X’) (reversible, area preserving constraint)

l Basis of most Markov Chain Monte Carlo ‘

Aspects of this might be of interest to the numerical integration / ML / journal club (?)



QCD path integral

Partition function becomes a real, statistical mechanical probability weight
Z= /dl,‘,dl,,duefsc[ulfsrw-w-,ul

Dirac differential operator represented via discrete derivative approximations: sparse matrix
(Until Taku & Gumaro sort QIS)

. . L . 2
use pseudofermion approach to replace with Gaussian integral VA = [dte™* /2

/@q—/@we*W(X)Ax}/‘VU) —detA
1 1, VSN
n2= [doe % [doe i% = [dodge 10
replace two flavour determinant with a two flavour pseudofermion integral

(det M)? = (det s M)? = det MM = /m*me*ﬂ’*(*)(’”*’v’fl‘f’(”



Hybrid Monte Carlo

2
. =z°

Auxiliary Gaussian integral over conjugate momentum field [dmwe 2
Lives in Lie algbra; serves only to move U round the group Manifold

22 (vt~
/dn/d¢/du e 7 e SGlUlg—¢*(MTM)" ¢

Outer Metropolis Monte Carlo algorithm

® Draw momenta
® Draw pseudofermion as gaussian n = M~1¢
® Metropolis acceptance step

Metropolis proposal includes inner molecular dynamics at constant Hamiltonian:

= w1 Ay -1
H=""+SclU]+9¢"(M'M) 1o

U=inU H I‘7‘F=(UVU5)TA
Must invert M™M at each timestep of evolution in MD force

S(MTM)™t = —(M"M) (M )M + M(§M))(MT M)~



*x Domain Decompose the Fermionic path integral at the node level
* |Large domains: algorithm tailored to GPU computation
* |Local domain solvers decouple from interconnect, realise full potential
node local - runs well on an island
. | o) S ;‘, Paull antisymmetry

~ ~ — — — p

Integrate non-local term
on larger timestep

By B, (1 DD Do —DsD5'Ds 0 1.0
B, by ) 0 1 0 Dg Dz D |

Schur decomposition

-stimate Sx to 1 0x gain



Observables

Importance sampling has reduced:

(6 = %/U e SVl G (U)dU — %Z()’(U)

® Zero momentum pion, kaon or B meson two point function
Z(uyoyad(x t)d%u(0,0)) erdCe{Yo)’st (x,£,0,0)%%M,(0,0;x, t)}

® Euclidean space o« Ae ™t

® Tune bare mass until interacting meson mass is correct, prefactor gives pion, kaon, B meson
decay constant

® etc..



Scalar field

S=¢*(0+m)¢
M(x,x') = 8, s 2(Ng+m*) =Y 8, v +8 0
u

Free case: M is hermitian diagonalised by a unitary transformation
M= VDV

Call it the “discrete fourier transform” in the free case, and the eigenvalues are

D(p) = (2sinp/2)*+ m’

® Propagator is the inverse of this
Interacting case: M is hermitian diagonalised by a unitary transformation

M= ViDV

covariant derivative couples to gauge fields, numerical solution of propagator

Still diagonalisable, eigenvectors no longer plane waves etc...

M= VDiag{%}v? ~ VDiag{P(4;)} V'

If P is polynomial approximating % over the whole spectral range = Krylov solvers



Greens functions in a lattice calculation

Each gauge configuration individually breaks translation invariance; restored under gauge average

Se(x,y) # SF(x—y)
Quark propagator is the Greens function of the Dirac operator D on each gauge sample

G(ylx) = Dy 18:x

Never (exactly) compute all elements of G(y,z)
Must solve the Dirac equation for each position independently.

Dy y(y) =n(x)
Algorithm minimising
Irl = [Dxy w(y) = n(x)]
will find y =D
Standard algorithms (Krylov solvers) are just (matrix) polynomial approximations to 1
Conjugate Gradients, Hestene and Steiffel (1952) has 8733 citations!



Chebyshev polynomials

Ta(x) = cos(ncos ™ x)

® n half periods over [—1,1]

® Uniform amplitude ripples
® x" growth outside range
® School boy induction using double angle formula = recursion relation

® Orthogonal under weight p(x) = (1 7x2)%

® Expansion in orthogonal polynomials = Chebyshev approximation

ot




Critical slowing down

Chebyshev worst case convergence bound for Conjugate Gradients

|r‘n =< \/E_l
‘r‘nfl \/E+1
Condition number
o P
z'min

Limiting cases:

® k=1— o0 =0 Converges in one iteration if given a matrix with all eigenvalues equation
(basis change of identity).

® k=1— 0 =1 Never converges if the matrix is singular A, =0

® o(k)" = tolerance estimates iteration count n

Spectrum of Dirac operator is important




Dirac Spectrum

Atiyah Singer index theorem

® Density of zero modes of Dirac operator — eigenvalues separated from zero only by
quark mass

Lowest (dimensionless) eigenvalue am, — 0 in continuum limit

Domain Wall / chiral lattice fermions reproduce the chiral anomaly:

® exact zero modes in classical topological fields
® integer topological index
® satisfy Atiyah-Singer index theorem in a discrete system

Probe non-perturbative dynamics of Yang-Mills theory



UnKrylov solvers

Possible resolutions to critical slowing down
1. Determine and accurately project a few thousand low eigenmodes!
® Cannot help HMC gauge field sampling
2. Multigrid methods approximately treating this low mode space
® Introduced for Wilson (Luscher 2007, Brower et al 2007)
Aim:

® Produce a deflation algorithm with a real gain inside HMC

Inot all topological in nature



Multigrid : how it works

® Project to low dimensional basis that captures the low mode space
® Represent the original matrix in this truncated basis

® Inverse of this truncated representation corrects the current solution

smoothing
\ (relaxation)
[—

prolongation
(interpolation)

Error on the fine grid

restriction
/
\ /
\ /
\ ’
o
N
s
Error approximated on
a smaller coarse grid
‘ Fine Coarse CoarseCoarse Evecs
Amin 1.0e-6 1.0e-6 1.0e-6 1.0e-6
Amax 60 11 5.0 4.0e-3

® Improve the condition number by lowering the cut-off as you go coarser
® Arguably a surface to volume suppression of the high modes as you block

® Smoother step helps cheaply wipe out the effects while preserving the low mode element of
coarse correction



PROCEEDINGS

OF SCIENCE

Hierarchically deflated conjugate residual

Azusa Yamaguchi*f
University of Edinburgh
E-mail: ayamaguc@staffmail.ed.ac.uk

Peter A Boyle
University of Edinburgh
E-mail: paboyle@ph.ed.ac.uk

We present a progress report on a new class of multigrid solver algorithm suitable for the solution
of 5d chiral fermions such as Domain Wall fermions and the Continued Fraction overlap. Unlike

HDCG [1], the algorithm works directly on a nearest neighbour fine operator. The fine operator

arXiv:2004.07732v1 [hep-lat] 16 Apr 2020

used is Hermitian indefinite, for example I's Dy, s, and convergence is achieved with an indefinite
matrix solver such as outer iteration based on conjugate residual. As a result coarse space repre-
sentations of the operator remain nearest neighbour, giving an 8 point stencil rather than the 81
point stencil used in HDCG. It is hoped this may make it viable to recalculate the matrix elements
of the little Dirac operator in an HMC evolution.

2016, QCD, D=4

Domain wall multigrid

Multigrid for Chiral Lattice Fermions: Domain Wall

Richard C. Brower”, M. A. Clarkf, Dean Howarth”, and Evan S.
Weinberg'

“Boston University, Boston, MA 02215, USA
fNVIDIA Corporation, Santa Clara, CA 95050, USA

April 17, 2020

Abstract

Critical slowing down for the Krylov Dirac solver presents a major obstacle to
further advances in lattice field theory as it approaches the continuum solution. We
propose a new multi-grid approach for chiral fermions, applicable to both the 5-d
domain wall or 4-d Overlap operator. The central idea is to directly coarsen the 4-d
‘Wilson kernel, giving an effective domain wall or overlap operator on each level. We
provide here an explicit construction for the Shamir domain wall formulation with
numerical tests for the 2-d Schwinger prototype, demonstrating near ideal multi-grid
scaling. The framework is designed for a natural extension to 4-d lattice QCD chi-
ral fermions, such as the Mdbius, Zolotarev or Borici domain wall discretizations
or directly to a rational expansion of the 4-d Overlap operator. For the Shamir
operator, the effective overlap operator is isolated by the use of a Pauli-Villars pre-
conditioner in the spirit of the Kahler-Dirac spectral map used in a recent staggered
MG algorithm [1].

2020, D=2, Schwinger model

And... 2014, PAB, HDCG

Comparison of Domain Wall Fermion Multigrid Methods

Peter Boyle
HET Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA. and
School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3J7Z, UK

Azusa Yamaguchi

School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3J7Z, UK

Abstract

We present a detailed comparison of several recent and new approaches to multigrid solver
algorithms suitable for the solution of 5d chiral fermion actions such as Domain Wall fermions in
the Shamir formulation, and also for the Partial Fraction and Continued Fraction overlap. Our
focus is on the acceleration of gauge configuration sampling, and a compact nearest neighbour
stencil is required to limit the calculational cost of obtaining a coarse operator. This necessitates
the coarsening of a nearest neighbour operator to preserve sparsity in coarsened grids, unlike
HDCG]1]. We compare the approaches of references|2, 3] and also several new hybrid schemes. In
this work we introduce a new recursive Chebyshev polynomial based setup scheme. We find that the
approach of reference[2], can both setup, and solve standard Shamir Domain Wall Fermions faster
than a single solve with red-black preconditioned Conjugate Gradients[30] on large volumes and for
modern GPU systems such as the Summit supercomputer. This is promising for the acceleration of
HMC, particularly if setup costs are shared across multiple Hasenbusch determinant factors. The

setup scheme is likely generally applicable to other Fermion actions.

D=4, QCD both methods
Almost done



Domain wall Fermion action

Dy =P_ 0 ... 0 mP,
S5:/d4$¢D5DW¢, -P, . .0 ... 0
_— 0 . g |
1 0 .. 0 —P_
DW(M):M+4_§Dh0p7 mP. 0 ... 0 —P, D

DH - 5 - M5 - _Dhop - Dw(—M5) —+ 1
Dh0p - (1 - 'Vu)Uu(x)éw+ﬂ,y + (1 + 'VM)UJ(?J)(Sw—u,y-

Chiral modes bound to surfaces in a fictitious fifth dimension
Exponentially accurate chiral symmetry
I's = 5 R5, where Rs5 denote reflection in the fifth dimension. Good for weak matrix elements, V-A current etc...

Gamma-5 Hermiticity:

Hpw =T'sDpw.
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Free field spectrum:
Rel = m+5— Y cosp, and |ImA|> = > sin’p,.

Problematic for polynomial approximation of 1/z

1

It is impossible to reproduce the phase winding of % = ;e‘w

around zero with an analytic
function. Indeed, perhaps belabouring the point, the orthogonality of the set of functions

CGNR M Myt
pettepe = ?7

e™? over [0, 27] makes it easy to show that minimising the uniformly weighted mean square

error over a fixed radius circle gives precisely zero for all polynomial coefficients. In the



Krylov solvers on 16”3 configuration, m=0.001

Algorithm Operator Iterations Full Matmuls Time (s)
CGNR MM 9541 19082 183s
BiCGSTAB M}, M 4140 8280 79s
prec-CGNR (Mo — Moo M, Mo )T (Mee — Moo M, M, 3224 6448 62s
prec-CGNR. (1 — M Moo M, Mo )T (1 — MV M M M,.) 3880 7760 77s
GCR(32,32) M}y, M 8693 17386 474s
1 T T T T T T T T T 3
: Unpreconditioned CGNR —— 3
RBCGNR (A) —— ]
0.1 t RB CGNR (B) E
SRR BiCGSTAB-PV ]
0.01 ¢ Tl | GCR-PV _
AN E
0.001 | ]
S 0.0001 F -
S E
(2]
T 1x10° E
1106 E
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Lattice multigrid

. 1x108 |
Generate near null vectors — new with Chebyshev:
. . 10000 f
deflation basis of vectors ¢y
100 ¢

Restrict to cuboidal blocks

0.01
0.000001 0.000010 0.000100 0.001000 0.010000 0.100000 1.000000 10.000

gbk(ﬂf) ; T EDb

b
¢k (:C ) i FIG. 2. Overlay of Chebyshev low-pass filter functions used to create the subspace.

0 ;xz&b

Use as a cheap, compressed short-hand basis for the low modes
Efficient because linear space spanned by blocks is O(volume) bigger

span{ ¢y} C span{¢h}.

Local coherence and deflation of the low
quark modes in lattice QCD

Martin Liischer

CERN, Physics Department, TH Division
CH-1211 Geneva 23, Switzerland

If the 64 x 323 lattice is divided into blocks of size 4%, for example, and if 12
eigenmodes out of 48 are selected for the construction of the domain-decomposed
subspace, the remaining 36 modes turn out to lie in the subspace up to deficits €
ranging from 0.03 to 0.06. The deficits increase with the block size, but become
smaller if more modes are used for the subspace construction. On the 48 x 243
lattice the situation is practically the same, i.e. similar deficits are obtained for a
given block size and subspace dimension.



We introduce projectors to the subspace S and its complement S,
(Mss Mss

Mgs Mgg
Ps=>_|éi)(erl 5 Ps=1-Ps,

_ _ ) V(11)-cycle multigrid preconditioner
Define coarse grid operator:
Afp = (gIM|er) 5 (Mss) = A7) (¢5]- 1 = o + 570
Ty = 11 + Qry
>‘
T3 = Ty + Sro.
Chebyshev smoothers — cj are the Chebyshev expansion of 1/x:
N ; [SPL + Q + PrS + SP,MS]
Schebyshev([a,b},N) = %CO + ZCJTY]<2(]\IZ) ]lja_ a) - ]') MT )
j=1



Two ways to fix inappropriate spectrum and retain nearest neighbour coarsening

BNL / Edinburgh

Mimic how CGNR works
Hermitian operator has real indefinite spectrum

A € [_)\maxy _)\min] U [)\mina )\rnax]

Coarsen

Hpw =T'sDpw.

Gammab compatible

P'Ts Dpw PP s DpwP = PDL PP Dy P

Eigenvalues, 242, 3 = 10.0,m = 0.05, L, = 8
Boston )

MITDVMl

Figure 2.5: The spectrum of our target multigrid operator, DLVDDW, compared with the
effective overlap spectrum, D;‘I/DDW. For clarity of presentation we truncate the x-axis;
the spectrum of DJIBVDDW extends out to Re(\)=z 25.

Coarsen Dw — make a coarse Ddwf out of coarse Dw

Pt DL, PP Dpyy P



Share code between fine Grid Mobius and Coarse Grid Mobius

( D, -D_P_ 0
—b_P, 0
A 0
DgDW =
0
0 0
\mD_P_ 0 0




Implemented Boston in D=4 QCD and run an algorithm shoot out on 16”3 x 32 Ls=16 m=0.001

BN L/Ed inbu rg h Name Algorithms
> HDCR AB
MG-PV CD < Boston
MG-MTM E

BNL-Boston hybrid — wgypianmiv v

p HDCG G

Edinburgh 2014



Algorithm C D E Algorithm F

Algorithm shoot out Fine 16x32x16  163x32x16  16% x 32 x 16 Fine Grid 163 x 32 x 16
Many parameters tuned Grid Fine Krylov pGCR(M)
Block 24 x 1 24 x 1 24 x 1 Smoother Senebyshes (0.5, 60], 12)
Algorithm A B Coarse 83 x 16 x 16 83 x 16 x 16 83 x 16 x 16 Coarsening Dy
Fine Grid 163 x 32 x 16 163 x 32 x 16 (F};j SGCRUILAD  pGORGMLD e Coarse Grid 8% x 16 x 16
Block 4x2x4x2x16 24 % 16 Krylov CCoalrsilrSlolver pG;j};(M)
Coarse Grid 4x8x4x16x1 83 x 16 x 1 Smoother Seccsan(24) Seon(14)  Senenpaner((0.5,60],14) oarse To erarTce .
Outer Krylov pGCR(Hpw) pGCR(Hpw) Coarsening Dy D Do Subspace basis 24
Basis vectors 40 32 Coarse BiCGSTAB( MzTD M) GCR (MzTD M) CONR(M' M) Subspace Amax 60.0
Smoother Schebyshev ([0-5,60],12) Schebyshev([0-5,60],12)  Solver Subspace Ajo 4.0
Coarsening Hpw Hpw Coarse 0.02 0.02 0.02/0.1 Subspace m 600
Coarse Solver Deflated CGNR Deflated CGNR Tolerance Subspace A 250
Coarse Tolerance 0.02/0.04 0.02/0.04 Coarse 0 0 0/64 Coarsening Hpw
Coarse Eigenvectors 48/64 48/128 Eigenvectors Coarse Grid 83 x 16 x 1
Subspace Amax 60.0 60.0 Subspace 24 24 24 Coarse Solver CGNR(MTM)
Subspace \jo 0.05 0.05 basis Coarse Tolerance 0.02
Subspace m 500 500 Subspace 60.0 60.0 60.0 Coarse Eigenvectors 128
Subspace A 100 100 Auns Subspace basis 32
Subspace A, 4.0 4.0 4.0 Subspace Amax 60.0
Subspace m 600 600 600 Subspace AL, 40
Subspace A 250 250 250 Subspace m 600

Subspace A 250




Cost of the preconditioner is NOT included — deflation effect is clear

1
f | | | " Algorithm A ——

B Algorithm B —— ]
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Outer iterations



Fine matrix multiples includes cost of smoothers and outer steps.
lgnores cost of coarse space solves.

Had to use higher order smoother for Boston method
1 I I I I

Residual

AIgorithIm A——

Algorithm B ——
0.1 Algorithm C
Algorithm D ]
0.01 Algorithm E -
Algorithm F —— 1
0.001 Algorithm G —— |
0.0001
1x10°°
1x10®
1x1077
1x108

1X1O-9 ] ] ] ] ]
0 1000 2000 3000 4000 5000 6000

Fine Multiplies



Residual

0.1

0.01

0.001

00001_
1x10 _
1x10 |
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1x108 _

1x1079 L
0 200 400 600 800 1000 1200 1400

Zoom — Hybrid MdagM with Dw coarsening not crazy...
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Algorithm F
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Fine Multiplies



Residual
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Time: so far most successful with BNL methods A,B
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Physical point!

We have reoptimised the most successful of the algorithms studies on a larger system with
lighter quark masses. We used a single 48 x 96 Mobius domain wall fermion configuration
number 1000 from our m,q = 0.00074 241 flavour Iwasaki gauge ensemble at 5 = 2.13[29]
with L, = 24. The valence quark action was Ly = 24 but with the Shamir Domain Wall

Algorithm Coarse Coarse Solve Time
Subspace operator

rbCGNR - - 502s

H 110s 12.5s 195s

H (RB CG coarse) 110s 12.5s 149s

F (RB CG coarse) 50s 12.5s 280s

Can set up and solve twice to 107-8 in 420s — faster than a single solve with the right baseline



Reusing subspace set up:

The Fermion determinant in domain wall Fermions is that of a ratio of the two flavour

and Pauli Villars operators,

M/ M,

detT—
Mpy, Mpy

 normally factored as several intermediate Hasenbusch terms such as,

M (my)TM (my) .detM(ml)TM<m1> det M (my)TM (ms)

detM(ml)TM(mﬁ M(mo)tM (my) ™ M(mpy)tM(mpy)

.. M(ml)TM(ml) M(ml)TM(ml) —I—Al M(ml)TM(ml) —|—A2
Alternate splitting may share e M ) + By M () A () & 29 M (o M ()
subspace generation?




Conclusions

e (multiple) new DWF multigrid methods
* Dw coarsening remains intriguing
* Hdwf coarsening so far wins — Boston were a big distraction!

 Demonstrated cross over to modest net gain in HMC application
 Compared to the correct baseline!

* Possible to use with Hasenbusch scheme



