

# Jet quenching at RHIC and the LHC:

# a status report

### Peter Jacobs

Lawrence Berkeley National Laboratory

### STAR@RHIC





### ALICE@LHC







rrrrr

BERKELEY



Jet quenching status report



# Testing perturbative QCD: inclusive jet production in p+p collisions





Magnificent achievement of QCD

• needed 30 years of development in theory, experiment, and algorithms to connect the two

Infrared and collinear-safe (IRC-safe) jet reconstruction algorithms:

- Integrate out all hadron degrees of freedom
- Same procedures applied to pQCD theory and experiment
- Enables direct, precise and improvable comparison of theory/experiment

→ jets measure partons

#### BNL 2/2/2021

# Jets in QCD matter



# Energy loss in QED

Fractional energy loss of an (on-shell) electron or positron in Lead



Figure 33.11: Fractional energy loss per radiation length in lead as a function of electron or positron energy. Electron (positron) scattering is considered as ionization

# Energy loss in QED

Fractional energy loss of an (on-shell) electron or positron in Lead



Figure 33.11: Fractional energy loss per radiation length in lead as a function of electron or positron energy. Electron (positron) scattering is considered as ionization

# Jet quenching in one slide

### Jet shower in-medium

### Jet shower in vacuum



Evolution of highly virtual parton via gluon radiation

Quantum interference  $\rightarrow$  angle-ordering

- hardest radiation is most collinear with jet axis
- Precise understanding in pQCD
- Accurately calculable with QCD-based Monte Carlo models



- vacuum shower
- medium-induced gluon emission

# These processes happen simultaneously and interfere

### Angle-ordering is modified or destroyed

#### BNL 2/2/2021

# Jet quenching: observable consequences I



# Jet quenching: observable consequences II

### 3. Jet deflection







4. Recovery of large-angle radiation







## Jet quenching: observable consequences III

### Four distinct manifestations of jet quenching:

- Jet energy loss
- Jet substructure modification
- Jet deflection
- Large-angle radiation

### Different manifestations of same underlying physics

- All must occur if any of them does
- Probe different aspects of jet quenching
- Different experimental systematics as fn of kinematics and collision system
- Different theoretical sensitivity as fn of kinematics and collision system

### This is an opportunity:

Measure the same physics multiple ways and require consistency

 $\rightarrow$  needs a theoretical framework...

## Radiative energy loss in QCD



Thermal field theory:

$$C(\mathbf{q}) = \frac{g_s^2 m_D^2 T}{\mathbf{q}^2 (\mathbf{q}^2 + m_D^2)}$$
$$m_D^2 = 3g_s^2 T^2 / 2$$

 $C(\mathbf{q}) =$ Scattering kernel  $\mathbf{q} =$ Momentum transfer

$$T = \text{Temperature} \\ m_D = \text{Debye mass}$$
 **QGP properties**

$$\hat{q} \equiv \frac{\left\langle k_{\perp}^2 \right\rangle}{L} \sim \frac{1}{L} \int d\mathbf{q}^2 \mathbf{q}^2 C\left(\mathbf{q}\right)$$

# Connecting qhat to measurements

Useful example: BDMPS

- multiple soft scattering approximation
- gives insight into parametric dependencies
- connection to more complete approaches must be checked

Medium-induced jet energy loss:  $\Delta E_{med} \sim \alpha_s \hat{q} L^2$ 



### Medium-induced angular broadening:

 $\left\langle k_{\rm T}^2 \right\rangle \sim \left\langle \Delta \varphi^2 \right\rangle \sim \alpha_s \hat{q} L$ 





## Taxonomy of current jet quenching measurements

Map driven by experimental considerations:

• arrows connect observables with just one thing changed

How do these map onto theory?



# Confusing! How to make sense of so many observables?

Go systematically: start with a few select measurements and build up the picture...



# Connecting experiment and theory...



Modular framework: multi-stage jet quenching calculations Parameter extraction via Bayesian Inference Goal: general tool for entire HI community





# JETSCAPE: measuring $\hat{q}$ using incl hadrons





JETSCAPE determination of qhat using inclusive hadron  $R_{AA}$ :

Current state-of-the-art quantitative analysis of jet quenching

Are we done?

 $\rightarrow$  real progress, but hardly the complete story



60

p (GeV/c)

### Consider some next steps....

100 120 140 160 180

0.8

# Inclusive hadron vs inclusive jet suppression





Inclusive hadron suppression driven by energy transport away from the hardest branch in the jet

• Insensitive to specific mechanisms of energy transport

More comprehensive: reconstructed jets

- very challenging due to large backgrounds, especially at RHIC
- but problem has been solved



# Inclusive jets in A+A: spectra

RHIC





#### High-quality data over a vast kinematic range



21

#### Measurement of inclusive charged-particle jet production in Au + Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

J. Adam,<sup>6</sup> L. Adamczyk,<sup>2</sup> J. R. Adams,<sup>39</sup> J. K. Adkins,<sup>30</sup> G. Agakishiev,<sup>28</sup> M. M. Aggarwal,<sup>41</sup> Z. Ahammed,<sup>61</sup> I. Alekseev,<sup>3,35</sup>

D. M. Anderson,<sup>55</sup> A. Aparin,<sup>28</sup> E. C. Aschenauer,<sup>6</sup> M. U. Ashraf,<sup>11</sup> F. G. Atetalla,<sup>29</sup> A. Attri,<sup>41</sup> G. S. Averichev,<sup>28</sup>

V. Bairathi,<sup>53</sup> K. Barish,<sup>10</sup> A. Behera,<sup>52</sup> R. Bellwied,<sup>20</sup> A. Bhasin,<sup>27</sup> J. Bielcik,<sup>14</sup> J. Bielcikova,<sup>38</sup> L. C. Bland,<sup>6</sup>

I. G. Bordyuzhin,<sup>3</sup> J. D. Brandenburg,<sup>49,6</sup> A. V. Brandin,<sup>35</sup> J. Butterworth,<sup>45</sup> H. Caines,<sup>64</sup> M. Calderón de la Barca Sánchez,<sup>8</sup>

D. Cebra,<sup>8</sup> I. Chakaberia,<sup>29,6</sup> P. Chaloupka,<sup>14</sup> B. K. Chan,<sup>9</sup> F-H. Chang,<sup>37</sup> Z. Chang,<sup>6</sup> N. Chankova-Bunzarova,<sup>28</sup>

A. Chatterjee,<sup>11</sup> D. Chen,<sup>10</sup> J. H. Chen,<sup>18</sup> X. Chen,<sup>48</sup> Z. Chen,<sup>49</sup> J. Cheng,<sup>57</sup> M. Cherney,<sup>13</sup> M. Chevalier,<sup>10</sup> S. Choudhury,<sup>18</sup>

#### PHYSICAL REVIEW C 102, 054913 (2020)

#### Measurement of inclusive charged-particle jet production in Au + Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

J. Adam,<sup>6</sup> L. Adamczyk,<sup>2</sup> J. R. Adams,<sup>39</sup> J. K. Adkins,<sup>30</sup> G. Agakishiev,<sup>28</sup> M. M. Aggarwal,<sup>41</sup> Z. Ahammed,<sup>61</sup> I. Alekseev,<sup>3,35</sup> D. M. Anderson,<sup>55</sup> A. Aparin,<sup>28</sup> E. C. Aschenauer,<sup>6</sup> M. U. Ashraf,<sup>11</sup> F. G. Atetalla,<sup>29</sup> A. Attri,<sup>41</sup> G. S. Averichev,<sup>28</sup> V. Bairathi,<sup>53</sup> K. Barish,<sup>10</sup> A. Behera,<sup>52</sup> R. Bellwied,<sup>20</sup> A. Bhasin,<sup>27</sup> J. Bielcik,<sup>14</sup> J. Bielcikova,<sup>38</sup> L. C. Bland,<sup>6</sup> I G Bordvuzhin <sup>3</sup> I D Brandenburg <sup>49,6</sup> A V Brandin <sup>35</sup> I Butterworth <sup>45</sup> H Caines <sup>64</sup> M Calderón de la Barca Sánchez <sup>8</sup> D. A. Morozov, <sup>43</sup> M. Nagy, <sup>16</sup> J. D. Nam, <sup>54</sup> Md. Nasim, <sup>22</sup> K. Nayak, <sup>11</sup> D. Neff, <sup>9</sup> J. M. Nelson, <sup>7</sup> D. B. Nemes, <sup>64</sup> M. Nie, <sup>49</sup> G. Nigmatkulov,<sup>35</sup> T. Niida,<sup>58</sup> L. V. Nogach,<sup>43</sup> T. Nonaka,<sup>58</sup> G. Odyniec,<sup>31</sup> A. Ogawa,<sup>6</sup> S. Oh,<sup>31</sup> V. A. Okorokov,<sup>35</sup> B. S. Page,<sup>6</sup> R. Pak,<sup>6</sup> A. Pandav,<sup>36</sup> Y. Panebratsev,<sup>28</sup> B. Pawlik,<sup>40</sup> D. Pawlowska,<sup>62</sup> H. Pei,<sup>11</sup> C. Perkins,<sup>7</sup> L. Pinsky,<sup>20</sup> R. L. Pintér,<sup>16</sup> J. Pluta,<sup>62</sup> J. Porter,<sup>31</sup> M. Posik,<sup>54</sup> N. K. Pruthi,<sup>41</sup> M. Przybycien,<sup>2</sup> J. Putschke,<sup>63</sup> H. Qiu,<sup>26</sup> A. Quintero,<sup>54</sup> S. K. Radhakrishnan,<sup>29</sup> S. Ramachandran,<sup>30</sup> R. L. Ray,<sup>56</sup> R. Reed,<sup>32</sup> H. G. Ritter,<sup>31</sup> J. B. Roberts,<sup>45</sup> O. V. Rogachevskiy,<sup>28</sup> J. L. Romero,<sup>8</sup> L. Ruan,<sup>6</sup> J. Rusnak,<sup>38</sup> N. R. Sahoo,<sup>49</sup> H. Sako,<sup>58</sup> S. Salur,<sup>46</sup> J. Sandweiss,<sup>64</sup> S. Sato,<sup>58</sup> W. B. Schmidke,<sup>6</sup> N. Schmitz,<sup>33</sup> B. R. Schweid,<sup>52</sup> F. Seck,<sup>15</sup> J. Seger,<sup>13</sup> M. Sergeeva,<sup>9</sup> R. Seto,<sup>10</sup> P. Seyboth,<sup>33</sup> N. Shah,<sup>24</sup> E. Shahaliev,<sup>28</sup> P. V. Shanmuganathan,<sup>6</sup> M. Shao,<sup>48</sup> F. Shen,<sup>49</sup> W. Q. Shen,<sup>50</sup> S. S. Shi,<sup>11</sup> Q. Y. Shou,<sup>50</sup> E. P. Sichtermann,<sup>31</sup> R. Sikora,<sup>2</sup> M. Simko,<sup>38</sup> J. Singh,<sup>41</sup> S. Singha,<sup>26</sup> N. Smirnov,<sup>64</sup> W. Solyst,<sup>25</sup> P. Sorensen,<sup>6</sup> H. M. Spinka,<sup>4</sup> B. Srivastava,<sup>44</sup> T. D. S. Stanislaus,<sup>60</sup> M. Štefaniak,<sup>62</sup> D. J. Stewart,<sup>64</sup> M. Strikhanov,<sup>35</sup> B. Stringfellow,<sup>44</sup> A. A. P. Suaide,<sup>47</sup> M. Sumbera,<sup>38</sup> B. Summa,<sup>42</sup> X. M. Sun,<sup>11</sup> X. Sun,<sup>12</sup> Y. Sun,<sup>48</sup> Y. Sun,<sup>21</sup> B. Surrow,<sup>54</sup> D. N. Svirida,<sup>3</sup> P. Szymanski,<sup>62</sup> A. H. Tang,<sup>6</sup> Z. Tang,<sup>48</sup> A. Taranenko,<sup>35</sup> T. Tarnowsky,<sup>34</sup> J. H. Thomas,<sup>31</sup> A. R. Timmins,<sup>20</sup> D. Tlusty,<sup>13</sup> M. Tokarev,<sup>28</sup> C. A. Tomkiel,<sup>32</sup> S. Trentalange,<sup>9</sup> R. E. Tribble,<sup>55</sup> P. Tribedy,<sup>6</sup> S. K. Tripathy,<sup>16</sup> O. D. Tsai,<sup>9</sup> Z. Tu,<sup>6</sup> T. Ullrich,<sup>6</sup> D. G. Underwood,<sup>4</sup> I. Upsal,<sup>49,6</sup> G. Van Buren,<sup>6</sup> J. Vanek,<sup>38</sup> A. N. Vasiliev,<sup>43</sup> I. Vassiliev,<sup>17</sup> F. Videbæk,<sup>6</sup> S. Vokal,<sup>28</sup> S. A. Voloshin,<sup>63</sup> F. Wang,<sup>44</sup> G. Wang,<sup>9</sup> J. S. Wang,<sup>21</sup> P. Wang,<sup>48</sup> Y. Wang,<sup>11</sup> Y. Wang,<sup>57</sup> Z. Wang,<sup>49</sup> J. C. Webb,<sup>6</sup> P. C. Weidenkaff,<sup>19</sup> L. Wen,<sup>9</sup> G. D. Westfall,<sup>34</sup> H. Wieman,<sup>31</sup> S. W. Wissink,<sup>25</sup> R. Witt,<sup>59</sup> Y. Wu,<sup>10</sup> Z. G. Xiao,<sup>57</sup> G. Xie,<sup>31</sup> W. Xie,<sup>44</sup> H. Xu,<sup>21</sup> N. Xu,<sup>31</sup> Q. H. Xu,<sup>49</sup> Y. F. Xu,<sup>50</sup> Y. Xu,<sup>49</sup> Z. Xu,<sup>6</sup> Z. Xu,<sup>9</sup> C. Yang,<sup>49</sup> Q. Yang,<sup>49</sup> S. Yang,<sup>6</sup> Y. Yang,<sup>37</sup> Z. Yang,<sup>11</sup> Z. Ye,<sup>45</sup> Z. Ye,<sup>12</sup> L. Yi,<sup>49</sup> K. Yip,<sup>6</sup> H. Zbroszczyk,<sup>62</sup> W. Zha,<sup>48</sup> D. Zhang,<sup>11</sup> S. Zhang,<sup>48</sup> S. Zhang,<sup>50</sup> X. P. Zhang,<sup>57</sup> Y. Zhang,<sup>48</sup> Y. Zhang,<sup>11</sup> Z. J. Zhang,<sup>37</sup> Z. Zhang,<sup>6</sup> Z. Zhang,<sup>12</sup> J. Zhao,<sup>44</sup> C. Zhou,<sup>57</sup> C. Zhou,<sup>57</sup> X. Zhou,<sup>57</sup> Z. Zhu,<sup>49</sup> M. Zurek,<sup>31</sup> and M. Zyzak<sup>17</sup> (STAR Collaboration) Taxas 70600

# STAR heavy ion jet measurements: subsystems and datasets

Charged-particle jets (this paper):

- Time Projection Chamber (TPC)
- Vertex Position Detector (VPD)

Calorimetric jets (in progress)

• + Barrel EM Calorimeter (BEMC)

Dataset: Au+Au,  $\sqrt{s_{NN}}=200 \text{ GeV}$ 

- 2011 minimum bias,  $L_{int}=6 \mu b^{-1}$
- 2014 minimum bias; BEMC-triggered, L<sub>int</sub>=5.2 nb<sup>-1</sup>

Centrality selection:

- charged-track multiplicity,  $|\eta| < 0.5$
- central: 0-10%
- peripheral: 60-80%



### Charged-jet reference: 200 GeV pp collisions

### Charged jets: cannot trigger, need MB pp

But insufficient MB pp @ 200 GeV  $\rightarrow$  PYTHIA 6.428 Perugia 2012, STAR tune



PYTHIA STAR tune vs STAR data: detector-level jets



### PYTHIA STAR tune: additional check

Compare inclusive pion yield



Jet quenching status report

# Jet reconstruction

Charged jets:

- all ch. tracks  $|\eta| < 1$
- $0.2 < p_T < 30 \text{ GeV/c}$

Jet reconstruction:

- Anti-k<sub>T</sub>, R=0.2, 0.3, 0.4
- Recombination: boost-invariant p<sub>T</sub> (3-vec)
- Jet centroid acceptance:  $|\eta| < 1-R$

This gives a population of jet candidates that is a combination of

- Jets from hard (high Q<sup>2</sup>) processes with p<sub>T</sub> smeared by complex uncorrelated event
- Combinatorial "jets" from random combination of hadrons from soft (low Q<sup>2</sup>) processes







High:  $Q^2 > \sim$  (few GeV)<sup>2</sup>, somewhat arbitrary

need an operational procedure to discriminate in measurement

### Analysis strategy: uncorrelated background suppression

G. De Barros et al., arXiv:1208.1518

Correction via unfolding is a linear transformation:

$$\mathbf{m} = \mathbf{Rt} \qquad \mathbf{R}_{ij} = \Pr(\text{measure } i | \text{truth is } j)$$

$$\mathbf{R}_{esponse \ matrix} \qquad \mathbf{Solution: bias \ side}$$

Regularized inversion:

 $\mathbf{t}' = \widetilde{\mathbf{R}^{-1}}\mathbf{m}$ 

If jet population contains significant non-jet background yield

- "Response" not meaningful
- Unfolding fails: doesn't know where to put the counts
- $\rightarrow$  need to suppress non-jet bkgd prior to unfolding

Solution: bias signal jet population by requiring a hard leading hadron



But: no cut on p<sub>T</sub><sup>jet</sup>

- unique to this analysis (for incl. jets)
- enables measurement to low  $p_T^{jet}$ , large R

### Cuts and corrections

### Event-wise:



#### p<sub>T</sub>-shift for UE ("horizontal")

Standard Fastjet procedure:

$$\rho = \text{median} \left\{ \frac{p_{T,\text{jet}}^{\text{raw},i}}{A_{\text{jet}}^{i}} \right\}$$
$$p_{T,\text{jet}}^{\text{reco},i} = p_{T,\text{jet}}^{\text{raw},i} - \rho A_{\text{jet}}^{i}$$



### Ensemble-averaged distribution:

Unfolding  $\mathbf{t}' = \widetilde{\mathbf{R}^{-1}}\mathbf{m}$ 

### $\mathbf{R} = \text{Detector effects} \otimes \text{Bkgd fluctuations}$



Syst. Uncert. details in backup slides

# Inclusive charged jets: raw data



### Inclusive charged jets: corrected spectra



jet quenching status report

# **Closure** Test

### Full analysis on simulated data

- answer is known
- close the circle and check consistency

### Parametrized model

- "thermal" bkgd + PYTHIA jets + yield suppression
- good agreement with real data distributions (backup slides)

Event generation

• similar statistical precision as real dataset

Complete analysis chain

• including syst. uncert.



 $\rightarrow$  no evidence of bias beyond sys uncert band

# Measure bias due to $p_{T,lead}^{min}$

Assertion: larger  $p_{T,lead}^{min} \rightarrow larger bias$ 

Compare  $p_{T,lead}^{min} = 5$  and 7 GeV/c

• ratio ~ unity within uncert.  $\rightarrow$  bias is negligible



Curious fact: bias is smaller in central Au+Au than in PYTHIA p+p....?

- non-trivial fragmentation+quenching physics
- explore with next-generation calorimetric measurement, TBD

# Measuring jet energy loss



 $R_{AA} = \frac{\text{Rate in central A} + A}{\text{Rate in p} + p \otimes \text{geometry}}$ 





# Jet energy loss: R<sub>CP</sub>



# Jet suppression RHIC vs LHC: additional comparisons





- Strong jet yield suppression
- Suppression ~ similar magnitude at RHIC and LHC...?



# Jet energy loss: R<sub>AA</sub>

### pp reference: PYTHIA STAR tune



# Inclusive jet R<sub>AA</sub>: comparison to models

Diverse jet quenching calculations based on pQCD + various approximations for jet+medium interaction



Current models work well over a wide range

Data relatively featureless, do not discriminate

How to make progress?

1. JETSCAPE: go beyond current formulation of qhat to capture full dynamics of jet-medium interaction  $\rightarrow$  global fits to hadron&jet data

2. Other observables with orthogonal parametric dependencies

37



### Jet acoplanarity: in-medium hard scattering ("Rutherford experiment")

Discrete scattering centers or effectively continuous medium?



d'Eramo et al., JHEP 1305 (2013) 031

### Distribution of momentum transfer $k_T$



Strong coupling: Gaussian distribution

What are the quasi-particles?

- high Q<sup>2</sup>: bare q and g
- low-ish  $Q^2$ :
  - thermal-mass glue
  - magnetic monopoles
  - ...?

# Jet acoplanarity: in-medium soft deflection

For intuition use BDMPS theory: multiple soft scattering approximation



Different parametric dependencies  $\rightarrow$  better model discrimination?

Side note: using jet scattering to measure the QGP is an old idea but experimentally very challenging

• techniques now in place



BNL 2/2/2021

# Jet acoplanarity: data





Significant background: Initial-state (Sudakov) radiation

L. Chen et al., Phys.Lett.B 773 (2017) 672



First- generation ALICE+STAR measurements:

no medium-induced acoplanarity observed above background Second-generation measurements with greater precision in progress....

## Jet acoplanarity: ALICE Run 2



# Phenomenology: in-medium energy loss measured via jet spectrum shift

Inclusive jet and X+jet measurements



RHIC: energy loss similar for different probes

• possible R-dependence LHC: energy loss larger than RHIC Confrontation with theory calculations TBD

# Jet quenching: Outlook

### LHC

- Run 3 starts early 2022; factor ~10 luminosity increase
- ALICE: essentially a new detector with vastly improved capabilities
- ATLAS/CMS moderate improvements (major upgrades ~2025 for Run 4)
- Through Run 4 (2029): Pb+Pb @10 nb <sup>-1</sup>

### RHIC

- New detector focused on jet physics: sPHENIX
- Upgraded STAR
- Through 2025: STAR Au+Au@110 nb <sup>-1</sup>; sPHENIX Au+Au @23 nb <sup>-1</sup>

### $\rightarrow$ At both facilities: factor ~10 increase in data, much improved instrumentation

But experimental advances alone are not sufficient for quantitative understanding of jet quenching and the QGP

### Theory and modelling:

- Conceptual and calculational advances in modelling of in-medium jet modification
- Rigorous-large scale global fits to a wide range of judiciously chosen jet and hadron data
- $\rightarrow$  Bayesian inference using JETSCAPE

Jet quenching was discovered 20 years ago; still compelling, not yet solved...

# Extra slides

# Measuring $\hat{q}$ : inclusive hadron suppression



*JET Collaboration Phys.Rev. C90 (2014) 1, 014909* 

Fit pQCD-based models to **single-hadron suppression** data at RHIC and LHC

For a 10 GeV light quark at time 0.6 fm/c: RHIC :  $\hat{q} \approx 1.2 \pm 0.3 \text{ GeV}^2/\text{fm}$ 

LHC :  $\hat{q} \approx 1.9 \pm 0.7 \text{ GeV}^2/\text{fm}$ 

Reasonable and improvable precision

Cold matter (e+A at HERA):  $\hat{q} \approx 0.02 \text{ GeV}^2/\text{fm}$ 

# RHIC && LHC: the present

STAR

### sPHENIX (under construction)









### RHIC: the future

### Beam Use Request to RHIC PAC, Sept 2020

STAR

**s**PHENIX

| year         | minimum bias $[\times 10^9 \text{ events}]$ | high-p<br>all vz | vz  < 70 cm | osity [nb <sup>-1</sup> ]<br> vz <30cm |
|--------------|---------------------------------------------|------------------|-------------|----------------------------------------|
| 2014<br>2016 | 2                                           | 26.5             | 19.1        | 15.7                                   |
| 2023         | 10                                          | 43               | 38          | 32                                     |
| 2025         | 10                                          | 58               | 52          | 43                                     |

#### Year Species $\sqrt{s_{NN}}$ Physics Rec. Lum. Samp. Lum. Cryo |z| < 10 cm[GeV] |z| < 10 cmWeeks Weeks 3.7 (5.7) nb<sup>-1</sup> 4.5 (6.9) nb<sup>-1</sup> 2023 200 24 (28) 9 (13) Au+Au $p^{\uparrow}p^{\uparrow}$ 24 (28) 0.3 (0.4) pb<sup>-1</sup> [5 kHz] 45 (62) pb<sup>-1</sup> 2024 200 12 (16) 4.5 (6.2) pb<sup>-1</sup> [10%-str] 0.11 pb<sup>-1</sup> 2024 $p^{\uparrow}+Au$ 5 0.003 pb<sup>-1</sup> [5 kHz] 200 \_ 0.01 pb<sup>-1</sup> [10%-str] 24 (28) 20.5 (24.5) 13 (15) nb<sup>-1</sup> 21 (25) nb<sup>-1</sup> 2025 Au+Au 200

Au+Au total int lumi through 2025:

- STAR: 110 nb<sup>-1</sup>
- sPHENIX: 23 nb<sup>-1</sup>







BNL 2/2/2021

# Jet quenching via high p<sub>T</sub> hadrons



# Inclusive hadron suppression: RHIC vs LHC

RHIC

### LHC



RHIC/LHC: Qualitatively similar, quantitatively different

• interplay between energy loss (~matter density) and spectrum shape

|            |                                               | Central Au+Au collisions, $\sqrt{s_{NN}} = 200 \text{ GeV}$ |              |              |                |                |                | Peripheral Au+Au collisions, $\sqrt{s_{NN}} = 200 \text{ GeV}$ |              |                |               |              |              |  |
|------------|-----------------------------------------------|-------------------------------------------------------------|--------------|--------------|----------------|----------------|----------------|----------------------------------------------------------------|--------------|----------------|---------------|--------------|--------------|--|
|            | R                                             | 0.2                                                         |              | 0.3          |                | 0.4            |                | 0.2                                                            |              | 0.3            |               | 0.4          |              |  |
|            | $p_{T,\text{jet}}^{\text{ch}} (\text{GeV}/c)$ | [14,16]                                                     | [20,25]      | [14,16]      | [20,25]        | [14,16]        | [20,25]        | [14,16]                                                        | [18,20]      | [14,16]        | [18,20]       | [14,16]      | [18,20]      |  |
|            | Tracking efficiency                           | +15<br>-12                                                  | +16<br>-10   | +16<br>-13   | $^{+12}_{-22}$ | $^{+14}_{-11}$ | $^{+18}_{-12}$ | +6<br>-8                                                       | +10<br>-12   | $^{+12}_{-11}$ | +14<br>-12    | +13<br>-12   | +16<br>-12   |  |
| Correlated | Fragmentation for $R_{det}$                   | $^{+1}_{-3}$                                                | $^{+3}_{-1}$ | $^{+3}_{-1}$ | +4<br>-5       | $^{+4}_{-1}$   | $^{+12}_{-2}$  | $^{+0}_{-5}$                                                   | $^{+0}_{-5}$ | $^{+0}_{-1}$   | $^{+2}_{-2}$  | $^{+2}_{-1}$ | $^{+3}_{-1}$ |  |
|            | $\delta p_T$                                  | +8<br>-3                                                    | +16<br>-1    | +10<br>-2    | +17<br>-2      | +7<br>-5       | +14<br>-3      | +10<br>-1                                                      | +15<br>-1    | +9<br>-1       | $^{+11}_{-1}$ | +8<br>-1     | +11<br>-1    |  |
|            | ρ                                             | $^{+1}_{-1}$                                                | $^{+1}_{-1}$ | +1<br>-0     | +0<br>-1       | $^{+1}_{-1}$   | $^{+1}_{-1}$   | $^{+1}_{-3}$                                                   | $^{+4}_{-1}$ | $^{+1}_{-3}$   | +2<br>-4      | $^{+1}_{-3}$ | +1<br>-4     |  |
|            | <b>Total correlated</b>                       | +17                                                         | +24          | +19          | +21            | +17            | +26            | $^{+12}_{-10}$                                                 | +18          | +15            | +18           | +15          | +20          |  |
| Shape      | Unfolding                                     | +17<br>-14                                                  | +12<br>-10   | +24<br>-19   | +25<br>-18     | +46<br>-29     | +51<br>-31     | +14<br>-11                                                     | +8<br>-7     | +8<br>-6       | +17<br>-12    | +4<br>-3     | +11<br>-9    |  |

TABLE I. Components of the systematic uncertainty (%) for jets with R = 0.2, 0.3, and 0.4 in central and peripheral Au+Au collisions. See text for details.

# Background Description - Parametrized Model

Closure test utilizes simple model for background: Boltzmann-distributed independent emission with hard jet fragmentation based on PYTHIA p+p calculation

E-by-e ET fluctuations well-described by Boltzmann indep. emission

Also works well for jet measurements



Picture consistent with good description of jet background by Mixed Events (STAR h+jet)

52

Heavy-ion jet measurement background strongly dominated by statistical phase space Contrary to conventional wisdom: the problem is simple!

### Jet broadening: R=0.2/R=0.4

