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The LHC will soon start to prepare for its high-luminosity phase.

Can we do something to enhance its physics potential?
If yes, we need to do it now or lose them for many decades.

Explore a rich BSM and SM physics program in the far forward region that greatly
expands the LHC physics potential with relatively little additional investment

In particular, use the LHC as a tau neutrino source.



Neutrinos at the LHC.
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Neutrinos detected from many sources, but not from colliders.

But there is a huge flux of neutrinos in the forward direction, mainly from
1, K and D meson decay.

ATLAS provides an intense and strongly collimated beam of TeVV-energy neutrinos
of all flavours along beam collision axis.




Neutrinos at the LHC
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In 2018, the FASER collaboration placed ~30 kg
in TI18 for a few weeks. O(10)
neutrino interactions expected

First neutrino interaction candidates were




Neutrinos at the LHC
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Neutrinos at the LHC.
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During Run 3 of the LHC, two new experiments will detect LHC neutrinos.
FASERVv: O(1k) nu_e, O(10k) nu_mu and O(10) nu_tau.
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Neutrinos at the LHC.
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FASER detector was successfully
installed into the TI12 tunnel in
March 2021
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Forward Physics Facility.
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The proposal: create a Forward Physics Facility (FPF) for the HL-LHC to house a
suite of experiments. Two promising locations were identified.
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Forward Physics Facility.

The FPF would house a suite of experiments that will greatly enhance the LHC'’s
physics potential for BSIV physics searches, neutrino physics and QCD.

FASER2 FASERV2
magnetized spectrometer emulsion-based plastic scintillator array
for BSM searches neutrino detector for BSM searches
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Forward Physics Facility.

Two dedicated FPF workshops in
November 2020
(https://indico.cern.ch/event/955956)
and May 2021
(https://indico.cern.ch/event/1022352)

Results summarized in paper
discussing the facility, proposed
experiments and physics potential
for BSM Physics, Neutrinos, QCD
and Astroparticle Physics.

~75 pages, written over last
~3month by ~80 authors

https://arxiv.org/abs/2109.10905

The Forward Physics Facility:
Sites, Experiments, and Physics Potential
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The Forward Physics Facility (FPF) is a proposal to create a cavern with the space and
infrastructure to support a suite of far-forward experiments at the Large Hadron Collider
during the High Luminosity era. Located along the beam collision axis and shielded from
the interaction point by at least 100 m of concrete and rock, the FPF will house experiments
that will detect particles outside the acceptance of the existing large LHC experiments and
will observe rare and exotic processes in an extremely low-background environment. In this
work, we summarize the current status of plans for the FPF, including recent progress in
civil engineering in identifying promising sites for the FPF; the FPF experiments currently
envisioned to realize the FPF’s physics potential; and the many Standard Model and new
physics topics that will be advanced by the FPF, including searches for long-lived particles,
probes of dark matter and dark sectors, high-statistics studies of TeV neutrinos of all three
flavors, aspects of perturbative and non-perturbative QCD, and high-energy astroparticle
physics.
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Tau Neutrino Fluxes and Rates.

= =
o (S)
N w

Interacting Neutrinos [1/bin]

=
o
—

Tau neutrinos at LHC are mainly produced in Ds meson and tau decays.

energy spectrum of neutrino flux as function
interacting neutrinos of displacement from LoS
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100 GeV - few TeV energies

flux peaked around LoS, start to drop around 1m away from LoS

complementary coverage of FASERv and SND@LHC



Tau Neutrino Fluxes and Rates.

Event rates at LHC neutrino experiments:

estimated with two LO MC generators: SIBYLL / DPMJET

Detector Number of CC Interactions
Name | Mass | Coverage Vet Ve | vty | Vet Uy
LHC Run3 FASERwv 1 ton n 2 8.5 1.3k / 4.6k | 6.1k / 9.1k 5_21 J 131 :
SNDQLHC | 800kg 7T<n<85 180 / 500 1k / 1.3k , 10 /_2_2_I
FASERv2 | 20 tons nz8 178k / 668k | 943k / 1.4M ;2.3k / 20k |
HL-LHC FLArE 10 tons el 36k / 113k | 203k / 268k : 1.5k / 4k :
AdvSND 2tons | 7.2<1n<9.2 | 6.5k / 20k 41k / 53k i_19_0_/ _75_4_!

O(10) tau neutrinos at FASERv and SND@LHC:
similar to event rate at DONuT and OPERA

thousands of tau neutrinos at FPF experiments:
use LHC as tau neutrino factory



Tau Neutrino Fluxes and Rates

Event rates at LHC neutrino experiments:

estimated with two LO MC generators: SIBYLL / DPMJET

Detector Number of CC Interactions
Name | Mass ‘ Coverage Vet Ve I VD ’ Uty
LHG Run3 FASERv | 1 ton n>8.5 1.3k / 4.6k | 6.1k / 9.1k :31 / 131 :
SND@LHC | 800kg | 7 <7 <85 180 / 500 1k / 1.3k || 10 /22 |
FASER»2 | 20 tons n>8 178k / 668k | 943k / 1.4M | 2.3k / 20k |
HL-LHC FLArE | 10 tons n>175 36k / 113k | 203k / 268k || 1.5k / 4k ,
AdvSND | 2tons | 7.2<1n<9.2 || 6.5k / 20k | 41k / 53k |1 190 / 754
Large spread in generator predictions: [D @
need to quantify and improve neutrino flux uncertainties. see talk by
Maria V. Garzelli on
mc>/\acb: charm production calculable in perturbative QCD theoretical
considerations and
. . . . . better flux
Define uncertainties associated with scale choice, PDFs and predictions
modeling of hadronization. )




Momentum Transfer Q [GeV]

Physics with tau Neutrinos: Production.

15 Gluon PDF with Neutrinos from Charm Decay
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Physics with tau Neutrinos: Production.
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Physics with tau Neutrinos: Interactions.

thousands of CC tau neutrino interactions expected at FPF
— FPF allows tau neutrino precision measurements
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Physics with tau Neutrinos: Interactions.

The FPF is essentially a Neutrino-lon collider with sqrt(s)~50GeV

Initial State

nuclear PDFs via
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different targets

strange quark PDFs
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Physics with tau Neutrinos: BSM.

Use tau neutrinos as probe of new physics.
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Probing Sterile Neutrino Oscillations

Probing EFTs
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Probing Light Tau-Neutrinophilic Mediators

also see talk by
Roshan Mammen Abraham on

Tau Neutrino MDMs




Summary

With FASER and SND@LHC, two new experiment will soon start to
perform tau neutrino measurements at the LHC.

They also pave the way for a forward neutrino program at the HL-LHC, opening up
many many new opportunities for , and ,
significantly extending the LHC’s physics program.

y

We would like to invite the NuTau community to help us better understand
the physics potential of this program and contribute the development
of the experiments.

You are welcome to join!

For questions, ideas, comments and other feedback:
please contact me via: felix.kling@desy.de
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