Appearance of tau neutrinos in the near detectors due to the oscillations involving sterile neutrinos

Lessons learned from MINOS+ studies

Katarzyna Grzelak

University of Warsaw

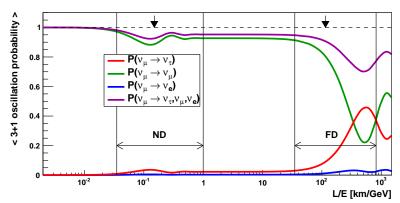
29.09.2021

Motivation

 ν_{τ} appearance in the near detectors of long-baseline experiments:

- is not expected if there are only 3 neutrino flavours
- possible signature of sterile neutrinos
- access to θ_{34}

Probabilities at short-distances in the 3+1 model

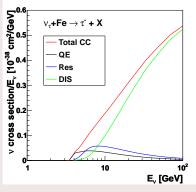

$$ext{P}_{
u_{\mu}
ightarrow
u_{ au}}(L,E) \simeq 4|U_{\mu4}|^2|U_{ au4}|^2\sin^2\left(rac{\Delta m_{41}^2L}{4E}
ight) \ \simeq \sin^22 heta_{\mu au}\sin^2\left(rac{\Delta m_{41}^2L}{4E}
ight)$$

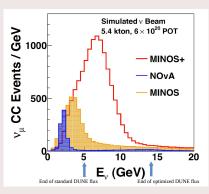
$$egin{align} \mathrm{P}_{
u_{\mu} o
u_{\mu}}(L,E) &\simeq 1 - 4|U_{\mu 4}|^2 (1 - |U_{\mu 4}|^2) \sin^2\left(rac{\Delta m_{41}^2 L}{4E}
ight) \ &= \sin^2 2 heta_{\mu\mu} \sin^2\left(rac{\Delta m_{41}^2 L}{4E}
ight) \ \end{aligned}$$

Sensitivities

- Sensitivities in the Δm_{41}^2 vs $\sin^2 2\theta_{\mu\tau}$ plane, based on full MINOS+ Monte Carlo simulation and reconstruction
- $\bullet \sin^2 2\theta_{\mu\tau} = \cos^4 \theta_{14} \sin^2 2\theta_{24} \sin^2 \theta_{34}$

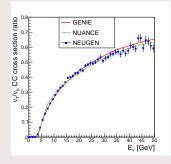
Probabilities in the 3+1 model


$$\Delta \textit{m}_{41}^2 = \textbf{10} \ \mathrm{eV^2}, \, \theta_{14} = 0.2, \, \theta_{24} = 0.2, \, \theta_{34} = 0.6 \ \text{and} \ \delta_i = 0.$$


Arrows \rightarrow position of MINOS+ maximum flux. In the near detector region also position of DUNE maximum flux.

ν_{τ} appearance in MINOS+

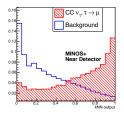
ullet Most of the MINOS+ flux above au production threshold


- High statistics of events collected in the Near Detector.
- Low spatial resolution of the detector (layers: 2.45 cm of steel and 1 cm of plastic scintillator)

Selection

CC $\nu_{\tau}, \tau \to \mu \nu_{\tau} \nu_{\mu}$

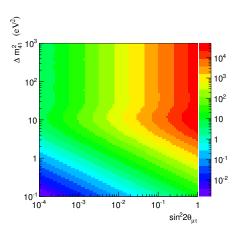
- Channel with smallest systematics
- Selection similar to ν_{μ} disappearance analysis


Additional systematics: ν_{τ} cross section

GENIE 2.8.6

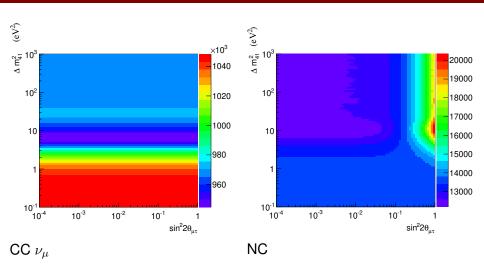
Selection

- Preselection
- Removal of NC background
- kNN (k-nearest neighbour) selection of quasi-elastic-like ν_{τ} interactions.
 - 4 input variables

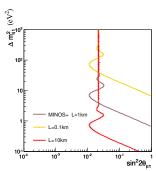

Distributions for equal number of signal nad background events.

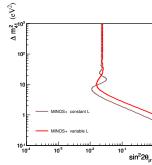
Mean signal efficiency: \sim 20%

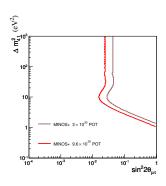
kNN from: https://root.cern/manual/tmva/



Signal CC ν_{τ} , $\tau \to \mu \nu_{\tau} \nu_{\mu}$

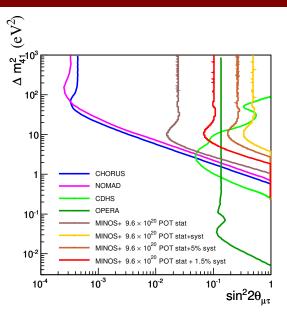

Expected numbers of selected CC $\nu_{\tau}, \tau \to \mu \nu_{\tau} \nu_{\mu}$ interactions for 3×10^{20} POT


Main backgrounds



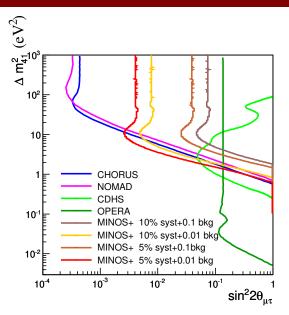
Expected numbers of CC ν_{μ} and NC events.

MINOS+ statistics only sensitivities


For tau appearance studies longer baselines are preferred.

Sensitivities for constant (1km) and changing baseline.

Impact of increased statistics


90% C.L. sensitivity contours

MINOS+ sensitivities

- Sensitivities obtained with full MINOS+ simulation and reconstruction
- Impact of reduced systematics

MINOS+ sensitivities

- Sensitivities obtained with full MINOS+ simulation and reconstruction
- Impact of improved signal/background ratio

Problems

- ullet Large CC u_{μ} background
- Proton from QE interactions usually not reconstructed
- ullet No au polarization in GENIE (2.8.6) and NEUGEN

All of these can be addressed in DUNE.

Summary

- MINOS+ ND sensitivities (Δm_{41}^2 vs $\sin^2 2\theta_{\mu\tau}$) are based on full Monte Carlo simulation and reconstruction
- DUNE vs MINOS+
 - ullet beams: similar neutrino energies (DUNE $u_{ au}$ optimized beam !)
 - similar L/E
 - total MINOS+ statistics corresponds to one-year of DUNE data taking
 - in DUNE significantly better signal/background ratio is expected
- \Rightarrow DUNE should be able to access unknown area of $(\sin^2 2\theta_{\mu\tau}, \Delta m_{41}^2)$ parameter space.