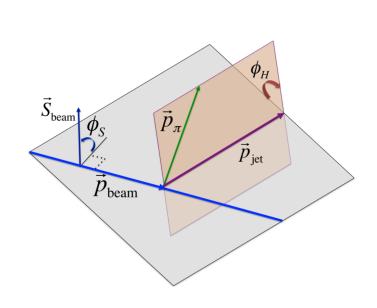
Hadron in jet production at the EIC

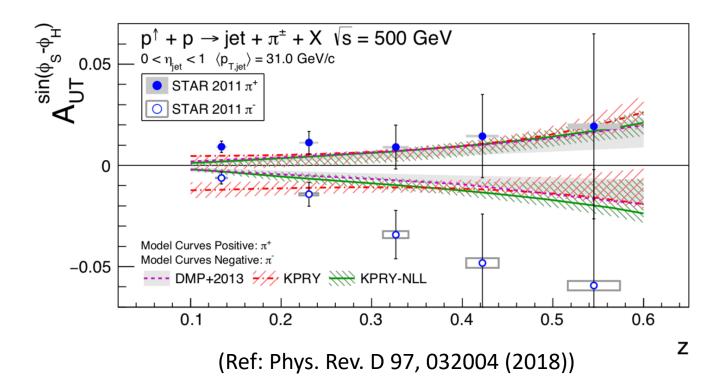
Xilin Liang, Miguel Arratia
University of California, Riverside
The 2nd Workshop on Jets for 3D Imaging at the EIC
Sep 28, 2021

Outline

- Motivation
- Particle Identification (PID) performance check
- Hadron in jet PID purity study
- Conclusion and outlook

Motivation


- Jets, which are collimated sprays of particles in high energy particle collision, are useful tools to study Quantum Chromodynamics(QCD).
- Jets can probe the 3D hadronic structure encoded in TMD PDFs and FFs*
 - In polarized collision, jets can probe Sivers effects and Collins effect.

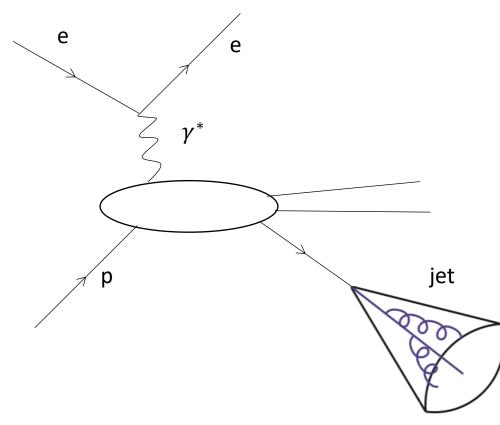

 Jet substructure provides innovative advances to study these effects and explore 3D hadronic structure.

	Quark polarization				
		Unpolarized (<i>U</i>)	Longitudinally polarized (L)	Transversely polarized (<i>T</i>)	
Nucleon polarization	U	f ₁ = •		$h_1^{\perp} = $ Boer-Mulder	
	L		$g_1 = \bigcirc \bigcirc \bigcirc \bigcirc$ Helicity	$h_{1L}^{\perp} = \bigcirc \bigcirc \bigcirc \bigcirc$	
	т	$f_{1T}^{\perp} = \bigodot$ - Sivers	$g_{17}^{\perp} = $ $-$	$h_{17} = $	
Nucleon Quark					

Motivation

- Collins effect with hadrons in jets. (Ref: Phys. Rev. D 97, 032004 (2018))
- For hadronic tracks in jets, high PID purity is critical for the measurement.
- At the EIC, we could expect to have a higher precision measurement.

Basic idea for Particle Identification (PID) hypothesis

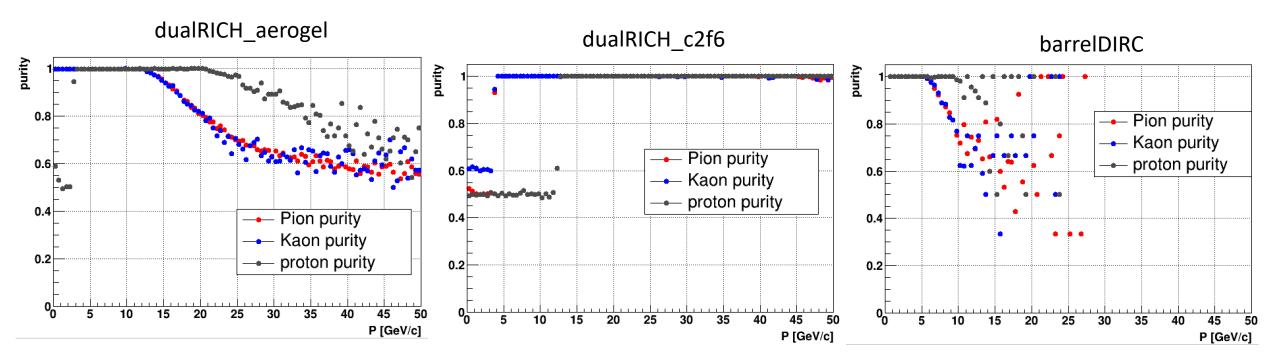

- For tracks, they are given the PID value for particles to indicate their particle species.
- The particle identification systems are implemented in Delphes simulation as identification maps which encode the efficiency that a track with truth identity A will be identified as PID hypothesis B.
- The PID hypothesis is based on assumption that two species should separate by "n sigma", which comes from EICUG PID group and Yellow Report.
 - Track pseudorapidity, momentum serve as the main aspect in PID hypothesis for hadrons.
- Check for Pion, Kaon and Proton tracks.
- Check for 3 different PID system

Pseudorapidity Range | Momentum Range |
$$-3.5 < \eta < -1.0$$
 | $\leq 7 \, \text{GeV}/c$ | $-1.0 < \eta < 0.5$ | $\leq 10 \, \text{GeV}/c$ | $-1.0 < \eta < 0.5$ | $\leq 15 \, \text{GeV}/c$ | $-1.0 < \eta < 1.5$ | $\leq 30 \, \text{GeV}/c$ | $-1.0 < \eta < 1.5$ | $\leq 30 \, \text{GeV}/c$ | $-1.0 < \eta < 1.5$ | $\leq 30 \, \text{GeV}/c$ | $-1.0 < \eta < 1.5$ | $\leq 30 \, \text{GeV}/c$ | $-1.0 < \eta < 1.5$ | $\leq 30 \, \text{GeV}/c$ | $-1.0 < \eta < 1.5$ | $\leq 30 \, \text{GeV}/c$ | $-1.0 < \eta < 1.5$ | $\leq 30 \, \text{GeV}/c$ | $-1.0 < \eta < 1.5$ |

Requested PID momentum coverage for 3σ pion/kaon separation. Ref: EIC Yellow Report arXiv:2103.05419

Data set

- Use Pythia8 to simulate Deep Inelastic Scattering (DIS) process
- Use Delphes to do the EIC detector respond simulation
 - Delphes card: **ATHENA.tcl** , where PID hypothesis is implemented for calorimeter systems.
- Number of event generated: 1 M
- $E_{proton} = 275 \text{ GeV}$
- E_{electron} = 10 GeV
- $Q^2 > 25 \text{ GeV}$
- Jet finding algorithm:
 - Anti-kT, R=1.0, $P_T > 3$ GeV

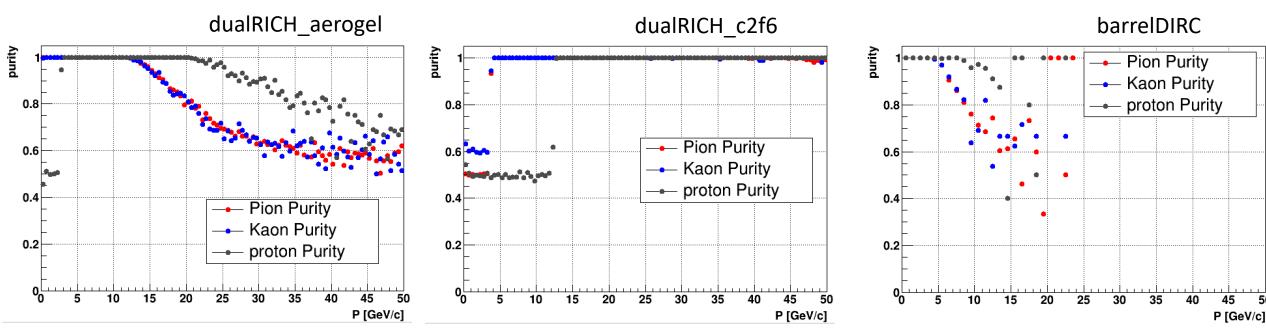

PID performance check for the PID systems

- Particle type: Pion, Kaon, proton
- PID purity:

 number of correctly identified tracks in PID system for each type

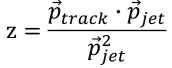
number of all true level tracks in PID system coverage for each type

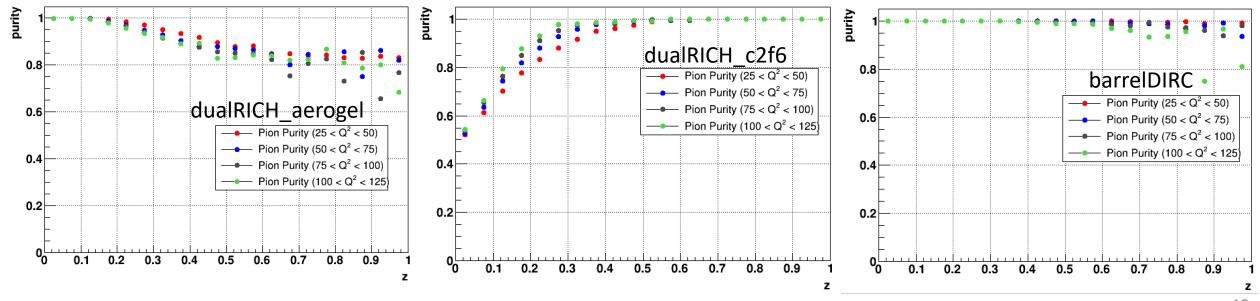
• π purity = $\frac{n(\pi \to \pi)}{n(\pi \to \pi) + n(\pi \to K) + n(\pi \to Pr)}$


Track PID purity study from jet

- Goal: check PID purity for tracks in jets with different track energy and the track longitudinal momentum fraction (z) from the jet.
 - Check PID purity with changing different (x,Q^2) as the next step.
 - Track longitudinal momentum fraction (z) from jet : $z = \frac{\vec{p}_{track} \cdot \vec{p}_{jet}}{\vec{p}_{jet}^2}$
- Check for 3 PID system:
 - dualRICH_aerogel: $1 < \eta < 3.5$
 - dualRICH_c2f6: $1 < \eta < 3.5$
 - barrelDIRC: $-1 < \eta < 1$
- Check for Pion, Kaon and Proton tracks.

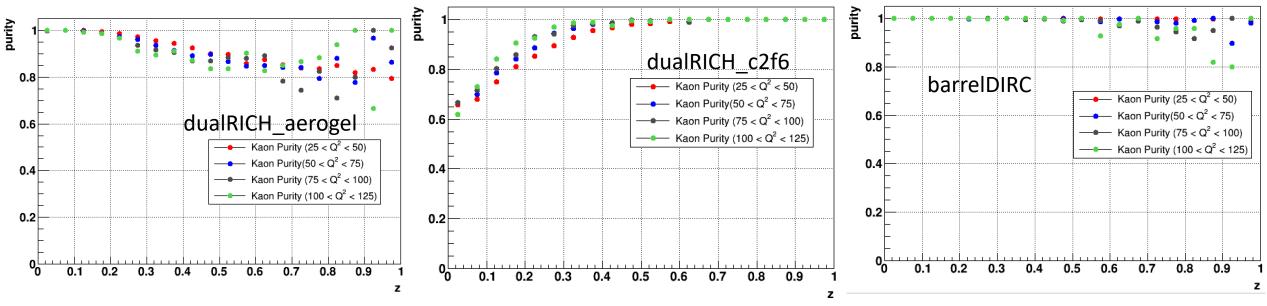
Jet finding algorithm: Anti-kT, R=1.0, $P_T > 3$ GeV


Track in jet purity result with different P

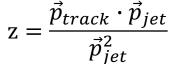

- purity: $\frac{number\ of\ correctly\ identified\ tracks\ in\ PID\ system}{number\ of\ all\ tracks\ in\ jet\ within\ PID\ system\ coverage}$
 - "Correctly identified track": PID value for track in jet is same as the PID value for the corresponding track in PID system hypothesis.
- The purity results distributions look similar with the purity in the PID performance check.

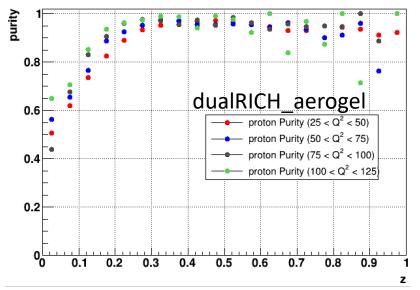
Pion track purity result for different z

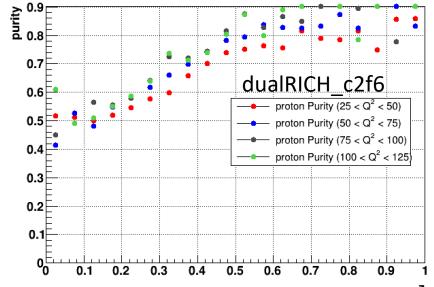
- purity: $\frac{number\ of\ correctly\ identified\ tracks\ in\ PID\ system}{number\ of\ all\ tracks\ in\ jet\ within\ PID\ system\ coverage}$
 - "Correctly identified track": PID value for track in jet same as the PID value for the corresponding track in PID system hypothesis.
 - Z: track longitudinal momentum fraction from the jet
 - Try to look at the pion track purity with the change of Q².



Kaon track purity result for different z

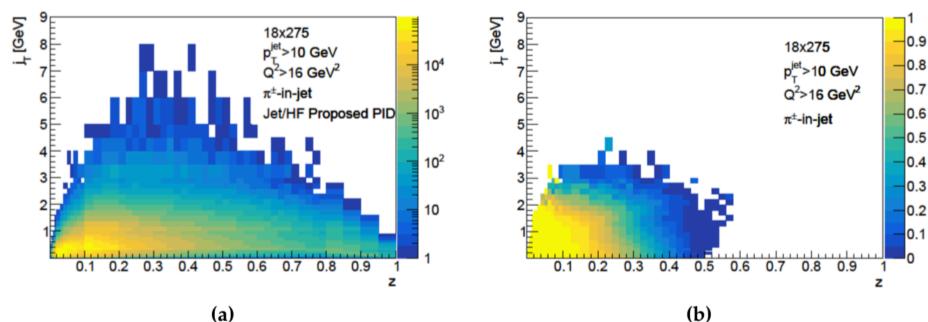

- purity: $\frac{number\ of\ correctly\ identified\ tracks\ in\ PID\ system}{number\ of\ all\ tracks\ in\ jet\ within\ PID\ system\ coverage}$
 - "Correctly identified track": PID value for track in jet same as the PID value for the corresponding track in PID system hypothesis.
 - Z: track longitudinal momentum fraction from the jet


$$z = \frac{\vec{p}_{track} \cdot \vec{p}_{jet}}{\vec{p}_{jet}^2}$$

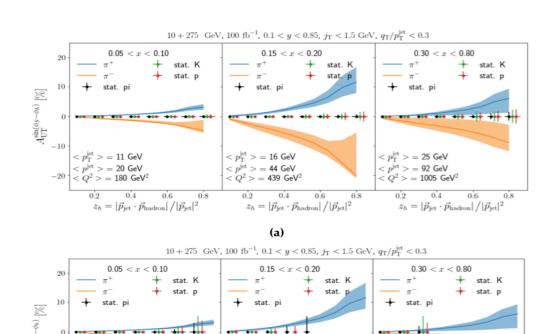


Proton track purity result for different z

- purity: $\frac{number\ of\ correctly\ identified\ tracks\ in\ PID\ system}{number\ of\ all\ tracks\ in\ jet\ within\ PID\ system\ coverage}$
 - "Correctly identified track": PID value for track in jet same as the PID value for the corresponding track in PID system hypothesis.
 - Z: track longitudinal momentum fraction from the jet.



Further investigation on PID with limited phase space


- The restricted momentum coverage (right plot) taken based on pseudorapidity range will limit the phase space and cause the high z range to be inaccessible.
 - The restricted momentum coverage is based on expected performance range.

Ref: EIC Yellow Report arXiv:2103.05419

Impact on physics measurement with restricted momentum coverage

- Top row plots are Collins asymmetry with hadrons in perfect expected PID.
- Bottom row plots are Collins asymmetry with hadrons in restricted momentum reach PID.
- Our ongoing step is to investigate how the PID purity change in limited phase space by choosing different (x,Q²).

(b)

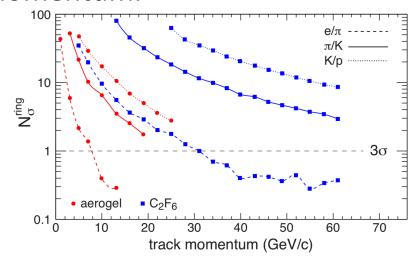
 $z_h = |\vec{p}_{\rm jet} \cdot \vec{p}_{\rm hadron}| / |\vec{p}_{\rm jet}|^2$

Ref: EIC Yellow Report, arXiv:2103.05419

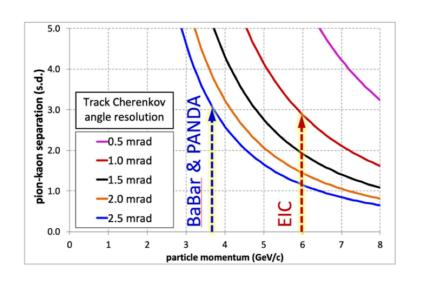
M. Arratia, Z. Kang, A. Prokudin, F. Ringer Phys.Rev.D 102 (2020) 7, 074015

 $z_h = |\vec{p}_{\text{jet}} \cdot \vec{p}_{\text{hadron}}| / |\vec{p}_{\text{jet}}|^2$

Conclusion and outlook


- At EIC, we would expect to explore TMD and probe hadronic structure with higher precision.
 - High PID purity for tracks in jet plays an essential role.
- The PID purity for dualRICH_aerogel, dualRICH_c2f6 system and barreDIRC system works well in the simulation and match with the expectation from EIC design.
- The PID purity for tracks in jets looks reasonable and we will continue to work with different (x,Q^2) ranges to explore the PID purity with the limited phase space.

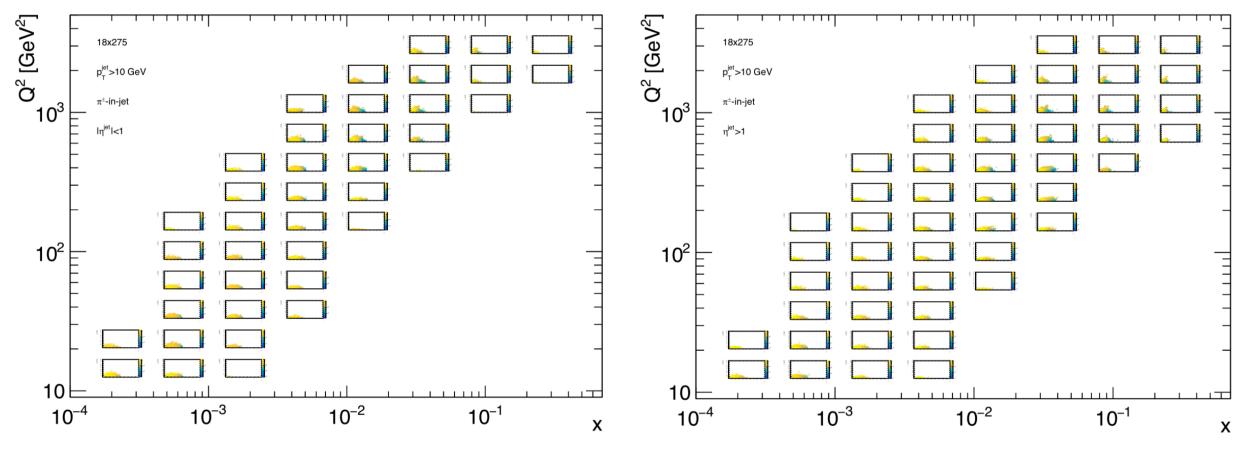
Thank you!


Back up

PID ability for dualRICH and barrelDIRC system

- **Dual RICH** system utilize two different radiator:
 - Aerogel radiator and gas radiator (C₂F₆)
- dualRICH system coverage for PID ability is $1 < \eta < 3.5$
- Two different radiator have different particle species separation ability for track momentum.

- Barrel DIRC system is based on Detection of Internally Reflected Cherenkov light (DIRC).
- Coverage for PID ability is $-1 < \eta < 1$
- To satisfy the physics goals for EIC, π/K identification are required up to 5 7 GeV/c.


Ref: EIC Yellow Report arXiv:2103.05419

The restricted momentum coverage values

Pesudorapidity range	restricted momentum coverage
-1.0 < η < 1.0	<= 5 GeV/c
1.0 < η < 2.0	<= 8 GeV/c
2.0 < η < 3.0	<= 20 GeV/c
3.0 < η < 3.5	<= 45 GeV/c

Effects on restricted momentum limit coverage on phase space

• Barrel region jets (left plot) and forward region jets (right plot).

Ref: EIC Yellow Report arXiv:2103.05419