Baryon Number Violation via Majorana Neutrinos

Early Universe, LHC, Deep Underground

Yue Zhang Caltech

Brookhaven Forum, 7 Oct 2015

Hooman Davoudiasl, Y.Z., PRD92 (2015) 1, 016005, arXiv:1504.07244

Outline

Simple & New framework

connect neutrino masses to origin of cosmic baryon asymmetry

B effective operators of right-handed neutrinos

Offers distinct LHC signatures

Prospects for nucleon decay

Neutrino mass

Our point of departure:

Neutrinos being massive is a fact. $|\Delta m_{\odot}^2| \simeq 7.58 \times 10^{-5} \,\mathrm{eV}$

$$|\Delta m_A^2| \simeq 2.35 \times 10^{-3} \,\mathrm{eV}^2$$

 $|\Delta m_{\odot}^2| \simeq 7.58 \times 10^{-5} \,\mathrm{eV}^2$

Clear evidence of physics beyond SM.

If stick to SM particle content, neutrino mass may arise from dimension 5 operator, or higher.

$$\frac{(LH)^2}{\Lambda} \quad \Rightarrow \Lambda \gtrsim 10^{14} \,\mathrm{GeV}$$

Consequence of Majorana mass: lepton number violation.

Seesaw Mechanism

In this talk, I assume RHNs exist, and type-I seesaw at work.

$$\mathcal{L} = \bar{N}i\partial N - M_N N^2 - Y_\nu \bar{N}LH$$

After EWSB, general mass matrix

$$\begin{pmatrix} 0 & Y_{\nu}v \\ Y_{\nu}^{T}v & M_{N} \end{pmatrix} \qquad \Rightarrow \frac{Y_{\nu}^{2}}{M_{N}} = \frac{1}{\Lambda}$$

An important point: M_N scale not fixed

I will consider RHN near TeV scale, Yukawa~10^{-6.}

• More tests in low energy and collider experiments.

Weak-TeV scale Seesaw

Majorana neutrino mass usually means violating lepton number.

Ways to search for LNV.

neutrinoless double beta decay

Racah; Furry, 1937

LHC and future hadron colliders

Keung, Senjanovic, 1983

RH neutrino interactions

Heavy-light neutrino mixing: natural value

$$\theta_{N\nu} \sim \sqrt{\frac{M_{\nu}}{M_N}} \sim 10^{-6}$$

Cross section at 13 TeV

$$\sigma_{(M_N=100\,{
m GeV})}\simeq 30\,{
m pb} imes \theta_{N
u}^2$$

This also indicates:

With natural value $\theta_{N\nu} \sim 10^{-6}$, production and decay of *N* via *W*-boson is easily overtaken by further "new physics" of *N*.

New physics of RHN

In this work, we consider RHNs having higher dimensional operators.

Options:

• d=5: $\overline{N}N(H^{\dagger}H)$

• **d=6:**
$$[\bar{N}\gamma^{\mu}(1+\gamma_5)e][\bar{d}\gamma_{\mu}(1+\gamma_5)u]$$

$$\frac{\lambda_a^{ijk}}{\Lambda^2} [N_a u_i d_j d_k]_R + \frac{\kappa_a^{ilm}}{\Lambda^2} [N_a d_i]_R [Q_l Q_m]_L + \text{h.c.}$$

Baryon number violation via Majorana neutrinos.

BNV operators

BNV operators with SM fields (no RHNs)

Weinberg, 1979

 $\mathcal{L}_{d=6} \sim [QQ]_L [QL]_L$ $+ [QQ]_L [ue]_R + [ud]_R [ue]_R$ $+ [QL]_L [ud]_R$

What we added is just similar extension involving RHNs.

$$\frac{\lambda_a^{ijk}}{\Lambda^2} [N_a u_i d_j d_k]_R + \frac{\kappa_a^{ilm}}{\Lambda^2} [N_a d_i]_R [Q_l Q_m]_L + \text{h.c.}$$

BNV operators

BNV operators with SM fields (no RHNs)

Weinberg, 1979

$$\mathcal{L}_{d=6} \sim [QQ]_L [QL]_L$$
$$+ [QQ]_L [ue]_R + [ud]_R [ue]_R$$
$$+ [QL]_L [ud]_R$$

What we added is just similar extension involving RHNs.

$$\frac{\lambda_a^{ijk}}{\Lambda^2} [N_a u_i d_j d_k]_R + \frac{\kappa_a^{ilm}}{\Lambda^2} [N_a d_i]_R [Q_l Q_m]_L + \text{h.c.}$$

BNV operators

BNV operators with SM fields (no RHNs)

Weinberg, 1979

When are they important?

Compare the two partial decay rates of RHN

$$\Gamma_{N\to 3q} = \frac{|\lambda|^2 M_N^5}{1024\pi^3 \Lambda^5} \qquad \qquad \Gamma_{N\to W^+\ell^-} = 10^{-14} M_N \left(\frac{\theta_{N\nu}}{10^{-6}}\right)^2$$

For $M_N \sim$ a few hundred GeV, $\Gamma_{N \rightarrow 3q}$ dominates when

 $\Lambda/\sqrt{\lambda} \lesssim 10 - 30 \,\mathrm{TeV}$

Is such low cutoff scale allowed?

What are the implications/How to test?

Nucleon constraints

Proton decay from *Nudd+LHN*

Least constrained for the operator *Ntbb* (t, b: RH mass eigenstates)

Proton decay: W dressing $\Rightarrow \Lambda/\sqrt{\lambda} > 1.5 \text{ TeV}$ (2 loop, mass insertion, CKM suppression, small $\theta_{N\nu}$) Davoudiasl, Y.Z., arXiv:1504.07244

The Setup

Define the model

$$\mathcal{L} = \mathcal{L}_{\rm SM} + Y_{\nu}\bar{N}LH + \lambda_a \frac{[\bar{N}_a^c P_R b][\bar{t}^c P_R b]}{\Lambda^2} \quad (a = 1, 2)$$

The operator NdQQ is always strongly constrained.

$$Q = \begin{pmatrix} u \\ V_{\rm CKM} d \end{pmatrix}$$

We assume this operator only generated at loop level.

Baryogenesis

Tree + 2-loop diagram interference.

Final CP asymmetry $\varepsilon = \frac{\operatorname{Im}(\lambda_1^2 \lambda_2^{*2})}{3072\pi^3 |\lambda_1|^2} \left(\frac{M_1}{\Lambda}\right)^4 \frac{M_1 M_2}{(M_2^2 - M_1^2)}$

If M_i is at EW scale, Λ must also be near TeV.

Take $|\lambda_i| \sim 1$, $M_1/\Lambda \sim \frac{1}{10}$ no need of degeneracy.

Non-thermal history

If $T \sim M_N$, dangerous wash out effect, $tbb \leftrightarrow \overline{t}\overline{b}\overline{b}$

$$\frac{\Gamma_{ws}}{H} \sim \frac{T^5 M_{pl}}{\Lambda^4 M_N^2} \gg 1$$

For success baryogenesis, the universe cannot be that hot.

1) Late decay of heavy scalar (inflaton) equally into N_1 and radiation, $T_{RH} \sim 1$ GeV.

$$\eta \sim \varepsilon/g_* \simeq \varepsilon/100$$

2) Late decay of inflaton exclusively into N_1 , then N_1 decay produces entropy.

$$\eta \sim \varepsilon \frac{T_{\rm RH}}{M_N} \simeq \varepsilon / 100$$

Explicit BNV

Advantage over mechanisms using sphalerons (e.g. leptogenesis)

- Sphaleron process effectively stops at low temperature
- Explicit BNV interactions can still be tested today

Allow direct measurement of baryon number violation today.

Collider signature

Special to third generation, identify B with top quark number.

Same-sign top quark events.

 $\Delta B = 2 \Leftrightarrow \Delta N_t = 2$

Low background: top quark number is conserved by strong interactions

Relevant cross sections

For $\Lambda/\sqrt{\lambda_1} = 1.5 \text{ TeV}$, LO cross section.

$\sigma(pp \to tN \to ttbb)$							
M_a	$200 {\rm GeV}$	$500~{\rm GeV}$	$800 {\rm GeV}$	$1 { m TeV}$			
$\sqrt{s} = 13 \text{ TeV}$	0.34 fb	0.16 fb	$8\times 10^{-2}~{\rm fb}$	$5\times 10^{-2}~{\rm fb}$			

Identify the sign of top quarks using their leptonic decays

Dominant background: QCD ttbar plus bbbar production, misidentify charge (rate $\sim 10^{-4}$).

CMS collaboration, arXiv: 1103.3470

At 13 TeV, NLO cross section $\sigma(pp \rightarrow t\bar{t}b\bar{b}) \sim 0.8 \text{ pb}$

Bevilacquaa, M. Worek, arXiv:1403.2046

More information

For larger cutoff $\Lambda/\sqrt{\lambda} \sim 5 - 10$ TeV and $M_N \sim 200$ GeV,

The leptonic decay of N is no longer negligible ($\theta_{Nv} \sim 10^{-6}$).

$$\overline{b}\overline{b} \to tN, \ N \to W\ell$$

 $N \to tbb$

This would help us to identify that *N* is the RHN for the Seesaw mechanism (same sign leptons again).

More interestingly, if this *N* is responsible for solar nu mass difference, *N* decay could result in a displaced vertex.

Go to higher energy

The particle responsible for TeV scale cutoff may be produced.

Simplest renormalizable model

$$\mathcal{L}_{\rm UV} = f_a \, T \, \bar{N}_a^c P_R b + f' \, T^* \, \bar{t}^c P_R b + M_T^2 |T|^2$$

T particle, color triplet, same quantum number as RH sbottom, or the triplet component of 5 of SU(5).

$\sigma(pp \rightarrow TT^*)$							
M_T	$1.5 { m TeV}$	$2 { m TeV}$	$5 { m TeV}$	$10 { m TeV}$			
$\sqrt{s} = 13 \text{ TeV}$	0.16 fb	0.01 fb		_			
$\sqrt{s} = 100 \text{ TeV}$	384 fb	92 fb	0.54 fb	4×10^{-3} fb			

Take home message

- The seesaw mechanism for neutrino mass is appealing. TeV seesaw models have the opportunity to be tested.
- HD operators involving RHN with TeV cutoff are allowed and generically can be relevant.
- With baryon number violating operators, we would expect new phenomenology of RHN — prepare for surprises.
- Interesting correlations between baryogenesis in early universe, collider signals, nucleon decay deep underground.

Thank you!