$J_{E_{\tau}}^{\text{II}}$ algorithm for two-prong jets

Ran Lu

Univerity of Wisconsin-Madison ArXiv: 1509.07522 with Yang Bai and Zhenyu Han

Brookhaven Forum 2015 2015-10-08

Jet and Maximization

- Jets Maximize the Jet Function
- Function of Jet 4-momentum J(P)
 - Increases with increasing energy
 - Decreases with increasing mass
- Concrete Example:

$$J = E\left(1 - \beta \frac{m^2}{E^2}\right), \beta \ge 0$$

• Cone Jet: opening angle $\sin \theta \le \sqrt{\frac{1}{\beta}}$ $\beta = 6: \theta = 0.4$ $\beta = 100: \theta = 0.1$

> H. Georgi, arXiv:1408.1161; S. Ge, arXiv:1408.3823; T.Kaufmann et. al. arXiv:1412.0298; J. Thaler, arXiv:1506.07876

Jet Function

Event

Jet

$J_{E_{T}}$ algorithm for hadron collider

Y. Bai, Z. Han, RL, arXiv: 1411.3705

• $E \rightarrow E_T$

$$J_{E_{T}^{\alpha}} = E_{T}^{\alpha} \left(1 - \beta \frac{m^{2}}{E_{T}^{2}} \right) \qquad E_{T}^{2} = p_{T}^{2} + m^{2}$$

• Implementation (https://github.com/LHCJet/JET)

GitHub This repository Search	Explore	Features Enterprise Blog	Sign up Sign in		
LHCJet / JET		• Watch 2	★ Star 0 Ÿ Fork 0		
① 109 commits	<pre> % 1 branch % 3 releases </pre>	🛱 1 contributor	<> Code		
ຖີ ມ branch: master - JET / +		E	() Issues 0		
Fix memory leak in python binding			ל Pull requests 0		
📄 ranlu authored on Mar 3		latest commit 777c3be730	4.5.1		
cmake/modules	Summary.cmake adapted from Clementine	4 months ago	- Pulse		
examples	Forgot to add it	4 months ago	Graphs		
astjet	Separate examples and internal codes	4 months ago	4 months ago		
python	Fix memory leak in python binding	2 months ago	https://github.com/LHCJe		
sample	Some event sample to test with	7 months ado			

Generalization

W tagging

- Fat jet + jet grooming:
 - Filtering
 - Pruning
 - Trimming
 - Soft Drop
 - ...
- Tagging variable
 - Mass Drop
 - Subjet Momentum Balance
 - N-subjettiness
 - Color Flow
 - Jet Charge
 - Energy Correlation Function
 - Planar Flow
 - Q-jet

...

Y. Cui, Z. Han and M. Schwartz Phys.Rev. D83, 074023 CMS Collaboration, JHEP 12 (2014), 017

W tagging

- Fat jet + jet grooming:
 - Filtering
 - Pruning
 - Trimming
 - Soft Drop
 - ...
- Tagging variable
 - Mass Drop
 - Subjet Momentum Balance
 - N-subjettiness
 - Color Flow
 - Jet Charge
 - Energy Correlation Function
 - Planar Flow
 - Q-jet

...

Y. Cui, Z. Han and M. Schwartz Phys.Rev. D83, 074023 CMS Collaboration, JHEP 12 (2014), 017

W tagging

Step I

 $J_{E_x}^{II} \longrightarrow$ Two-prong Jet

- Tagging variable •
 - Mass Drop —
 - Subjet Momentum Balance
 - N-subjettiness —
 - Color Flow
 - Jet Charge
 - **Energy Correlation Function**
 - **Planar Flow**
 - Q-jet

...

Jet Function of Two-prong Jets

- *J*(*P*) is not enough
- 4-momentum: mass and velocity (point particle)
- "Shape" variables of the object
- Event/Jet shape variables
 - Sphericity, Aplanarity...
 - N-subjettiness, Energy correlation function...
 - Fox-Wolfram Moments

Jet Function of Two-prong Jets

- *J*(*P*) is not enough
- 4-momentum: mass and velocity (point particle)
- "Shape" variables of the object
- Event/Jet shape variables
 - Sphericity, Aplanarity...
 - N-subjettiness, ECF...
 - Fox-Wolfram Moments

Fox-Wolfram Moments

• General definition:

$$H_n = \sum_{i,j} \frac{|p_i||p_j|}{E_J^2} P_n(\cos \theta_{i,j})$$

• Examples:

$$J = E((1-\beta)H_0 + \beta H_1)$$

$$H_2 = \sum_{i,j} \frac{|p_i||p_j|}{E_J^2} \frac{(3\cos^2\theta_{i,j} - 1)}{2}$$

- H₂ only constrains $\cos^2 \theta_{i,j}$
- Optimizing $H_2 \rightarrow$ Two-prong structure?

G. Fox and S. Wolfram, Phys.Rev.Lett. 41 (1978) 1581

\widetilde{H}_2 Function

Lab Frame Modification

$$J_{E_T}^{II}$$
 Function

1

\2

Lab Frame Definition

$$\widetilde{H}_{2} = \left(\sum_{i,j} |p_{i}| |p_{j}| P_{2}(\cos(\theta_{i,j}))\right)_{\text{rest frame}} \equiv m^{2} \sum_{i,j} \frac{(p_{i}^{\mu} p_{j\mu})^{2}}{(P^{\mu} p_{i\mu})(P^{\nu} p_{j\nu})} - m^{2}$$

Characteristic Function of two-prong objects

$$J_{E_T}^{\mathrm{II}} = E_T^2 \left(1 - \beta \frac{m^2}{E_T^2} + \gamma \frac{\widetilde{H}_2}{E_T^2} \right)$$

Parameters

Lab Frame Definition

$$\widetilde{H}_{2} = \left(\sum_{i,j} |p_{i}| |p_{j}| P_{2}(\cos(\theta_{i,j}))\right)_{\text{rest frame}} \equiv m^{2} \sum_{i,j} \frac{(p_{i}^{\mu} p_{j\mu})^{2}}{(P^{\mu} p_{i\mu})(P^{\nu} p_{j\nu})} - m^{2}$$

 $(\dots)2$

Characteristic Function of two-prong objects

$$J_{E_{T}}^{\text{II}} = E_{T}^{2} \left(1 - \beta \frac{m^{2}}{E_{T}^{2}} + \gamma \frac{\widetilde{H}_{2}}{E_{T}^{2}} \right) \approx E_{T}^{2} \left(1 - (\beta - \gamma) \frac{m^{2}}{E_{T}^{2}} \right)$$

• $\beta - \gamma$: overall size of the object

Passive Catchment Area

Approximation

- Global maximization is still NP
- Approximate solution (double cone intuition)
 - Start with large cone (e.g. C/A R=1.8)
 - Collect many anti-kt subjets with different R
 - Find the pair maximize $J_{E_{\tau}}^{\text{II}}$ function (overlapping)
- Implementation (https://github.com/LHCJet/JETII)

GitHub This repository	Search	Explore Featu	res Enterprise Pricing	Sign up Sign in
LHCJet / JETII			• Watch 2	★ Star 0 % Fork 0
A jet clustering algorithm for	find 2-prong jets.			
T 3 commits	⊮ 1 branch	♥ 0 releases	ਹੁੰਦਾ 2 contributors	<> Code
ີ ເງ Branch: master - JE	TII / +			(1) Issues 0 1) Pull requests 0
arXiv number				
ranlu authored 10 days ago			latest commit e159999380 🔂	A Pulse

Approximation

Comparing with Filtering/Pruning

- Signal: WW; Background: QCD dijet $\hat{p}_T > p_T^{min}$
- 14 TeV LHC, PYTHIA 8, 20 SoftQCD pile up
- Fat jet + filtering/pruning v.s. $J_{E_{\tau}}^{\text{II}}$
- Optimize for maximal signal efficiency
- ROC curve using N-subjettiness variable τ_2/τ_1

Comparing with Filtering/Pruning

Diboson Resonance

- 2 TeV W' decaying into W+Z
- 8 TeV LHC, PYTHIA 8, 20 SoftQCD pileup
- Following ATLAS cuts as close as possible
- No detector effects, no #tracks cut
- $J_{E_{\tau}}^{\text{II}}$ v.s. Fat jet + declustering-filtering (DF)

Conclusion and Future Directions

- New approach to study jets/objects
- Jet function for two-prong jet
- Potentially useful for W/Z/H tagging
- Realistic tests/applications
- General framework for other objects
- Better/Faster approximation