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What happens before hydrodynamics?

Near-equilibrium

Microscopic theories AdS/CFT Hydrodynamics

——— @)

QGP

Chun Shen QM’19

< Further from equilibrium

Hydrodynamization may be incomplete in small systems



Hydrodynamization near equilibrium

Kinetic theory Near-equilibrium

Microscopic theories AdS/CFT \; Hydrodynamics
/ € (T) ) fu’lJJ (7_)
QGP
Perturbation in
microscopic theory
many degrees of dynamics governed by
freedom are important conservation laws
THydro T
Decay of fast

“non-hydrodynamic” modes Slow “hydrodynamic modes”
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Hydrodynamics far-from-equilibrium?

Near equilibrium > hydrodynamics = reduction in degrees of freedom



Hydrodynamics far-from-equilibrium?

Near equilibrium > hydrodynamics = reduction in degrees of freedom
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equilibrium

Bjorken flow in Israel-Stewart, DNMR, RTA, AdS/CFT
[1503.07514, 1609.04803, 1704.08699, 1709.06644, 1712.03865,
1907.08101]

Gubser flow in aHydro, Israel-Stewart, DNMR [1711.01745]



Hydrodynamics far-from-equilibrium?

Near equilibrium > hydrodynamics = reduction in degrees of freedom

full microscopic
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Universality far from equilibrium
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Hydrodynamics far-from-equilibrium?

Observed in several microscopic theories...
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Romatschke [1704.08699]

Relevance for phenomenology

Giacalone, Mazeliauskas, Schlichting [1908.02866]
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Hydrodynamics far-from-equilibrium?

And for higher moments of the distribution function...

QCD kinetic theory

0.001

Almaalol, Kurkela, Strickland [2004.05 195]
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Hydrodynamics far-from-equilibrium?
And for higher moments of the distribution function... [1809.01200,2004.05195]

QCD kinetic theory
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Almaalol, Kurkela, Strickland [2004 .05195]
Apparent reduction in degrees of freedom before relaxation time

What is the origin of reduced degrees of freedom before collisions?
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What 1s the origin of reduced degrees of freedom before collisions?

Hydrodynamics is one way to cause a reduction in the
effective degrees of freedom

Emerging picture: rapid expansion can also cause a

reduction in degrees of freedom
Kurkela, van der Schee, Wiedemann, Wu [1907.08101]
JB, Yan, Yin [1910.00021]

Motivates understanding the attractor in terms of far-
from-equilibrium slow degrees of freedom

Berges, Mazeliauskas [1810.10554]

JB, Yan, Yin [1910.00021]

JB, Ke, Yan, Yi (in preparation)

JB, Scheihing-Hitschfeld, Yin (in preparation)



Hint: different physical origin of early- and late-time attractors

relaxation time approximation

0.3

pr | | / ‘ | (qualitatively similar results
€ 02 for Israel-Stewart)
0.1}
0 02 t=1/1r TR relaxation timescale
' 0.01 1

100
Kurkela, van der Schee, Wiedemann, Wu [1907.08101]

Reduction in : :
Rapid expansion

degrees of freedom : .. Collisions
: without collisions
driven by...
hydrodynamic
modes

Suggests “slow mode” describing rapid expansion without collisions
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Hydrodynamization in kinetic theory

Boost-invariant longitudinal expansion:

an — %a Zf — _C[f] (homogenous in

transverse plane)

l_'_l |_'_l
longitudinal
expansion

collisions

pf

Can connect to hydrodynamics by considering
the distribution contributing to the stress tensor F = /
p

Jasmine Brewer (CERN) (e.g. Kurkela, Wiedemann, Wu [1905.05139]) 12



Evolution of F can be described by effective “Hamiltonian”

[#(0nf = 20,.£ = ~cl)

(sometimes)

0F —=(.)F  (..)F

Evolution of F +—> 0,9 = —H(y)y

Eigenstates give effective degrees of freedom

Slow modes: ground states

Jasmine Brewer (CERN)

JB, Yan, Yin [1910.00021]
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Evolution of F can be described by effective “Hamiltonian”

[#(0nf = 20,.£ = ~cl)

1 (sometimes)

O F ——(.)F  ()F
Clf = —(f = fua)
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Evolution of F can be described by effective “Hamiltonian”

[#(0nf = 20,.£ = ~cl)

1 (sometimes)
0.F —=(..)F  (...)F
T

Clf = —(f = fua)

Bjorken expansion F = F(0;7)
JB, Yan, Yin [1910.00021]

Transverse momentum anisotropy [ = [F (9, ¢; 7‘)

JB, Ke, Yan, Yin (in progress)
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Fokker-Planck collision kernel: JB, Scheihing-Hitschfeld, Yin (in progress)



Truncate H using moment expansion

Bjorken expansion

F (cos ;1) =€(T) + Z 4n2+ 1£n(T)P2n(COS<9) —> Y= (6L1,Ls,...)

n=1

Jasmine Brewer (CERN) 16



Truncate H using moment expansion

Bjorken expansion
dn +1

F (cosO;71)=¢€(T)+ Z 5 L,(7)Pon(cos0) «—> = (€,L1,Lo,...)
n=1
P4 Pz me pm’
| o 0 (6,[,1,/:,2,...) — (6,0,0,...)
or P : : : hydrodynamization

Fig adapted from KoMPoST [1805.00961]
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Ground state: far-from-equilibrium slow mode
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Ground state: far-from-equilibrium slow mode

: T
200, RTA: H=Hr+ —Hpy
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Kurkela, van der Schee, Wiedemann, Wu [1907.08101]
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But this slow mode is not a hydrodynamic mode

O 4 | ----full solutions
DI,
- 0.2 M \‘\ \
€ AR
O_O | Se—e__I--o==Ew ‘ | |
102 10! 1 10 T/Tr
pT pT pT

Pz 10— §0P: \j p:

“expansion” “collision”
slow mode slow mode

M,_| a
)

Jasmine Brewer (CERN)

> T/TR

JB, Yan, Yin [1910.00021]
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But this slow mode is not a hydrodynamic mode

0.4}

----full solutions

| contribution only
from slowest mode

Jasmine Brewer (CERN)

“expansion”
slow mode

1 0 T/TR

pr

p: /\p > T/TR
\

JB, Yan, Yin [1910.00021]
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“collision”
slow mode



A system prepared in its (instantaneous) ground state remains
in its (instantaneous) ground state if transitions are suppressed

O- log A
Transition rate ~ % <O(7‘)\H\n(7')> A= T/TR



A system prepared in its (instantaneous) ground state remains
in its (instantaneous) ground state if transitions are suppressed

Transition rate ~

0, log A

AFE,

“Slow quench” adiabaticity
 Hamiltonian evolution slow

compared to energy gap

* Small close to hydro limit

Jasmine Brewer (MIT)

(0(7)[H|n (7))

AN=T/TR
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A system prepared in its (instantaneous) ground state remains
in its (instantaneous) ground state if transitions are suppressed

0; log A
Transition rate ~ ﬁ (0(7)|H |n(T))
“Slow quench” adiabaticity “Fast quench” adiabaticity
* Hamiltonian evolution slow * Matrix element suppressed
compared to energy gap * Small at early times because H

* Small close to hydro limit suppressed by T

Jasmine Brewer (MIT) 24



But this slow mode is not a hydrodynamic mode

0.4}

----full solutions

|  leading order
contributions from
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“expansion”
slow mode

JB, Yan, Yin [1910.00021]
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Bjorken expansion:

ground state “slow mode” gapped
from excited states

N
o

—_
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eigenvalue
o B

slow mode

far-from-equilibrium evolution

described by ground state

0.4

----full solutions

pr
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Bjorken is special because there is only one hydrodynamic mode.

Jasmine Brewer (CERN)
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Bjorken expansion

F (cosO;1) =€e(T) +

Beyond Bjorken expansion

)3

n=1

4n + 1
2

Transverse momentum anisotropy

Jasmine Brewer (CERN)

Ln(T)Pon(cos0) «—> = (€,L1,Lo,...

Pz
Y™ (0, ¢) ~ cos(me) /™ (cos 0)

)
p

Matveenko, Gryaznykh, Kondratev, Litvinenko

JB, Weiyao Ke, Li Yan, Yi Yin (in progress)

27

Dy



Beyond Bjorken expansion

Bjorken expansion

F (cosO;1) =€e(T) + Z 4n2+ 1£n(T)P2n<COS(9) — Y= 1(6L1,L,...)

n=1

p:
o, P

Transverse momentum anisotropy  Y;"' (0, ¢) ~ cos(me¢) ;" (cos 0)

Boost-invariant expansion, spatially homogeneous in transverse plane: p, /ngst s By
. . T
Different m, even/odd t = | + m do not mix H™t = H?’t + —Hz’t
TR

Matveenko, Gryaznykh, Kondratev, Litvinenko
Jasmine Brewer (CERN) JB, Weiyao Ke, Li Yan, Yi Yin (in progress) %%



Beyond Bjorken expansion

Energy gap of H™" = Hy"' + —Hp*
R

Hydro modes

m > 2, even in p,

5 10

/1R

Y™ (0, ¢) ~ cos(mg) P (cos 0)

Jasmine Brewer (CERN) JB, Weiyao Ke, Li Yan, Yi Yin (in progress) 29



Beyond Bjorken expansion

R

Energy gap of H™" = Hy"' + —Hp*

Hydro modes
65 | Hydrodynamic modes are gapped at late times.

m > 2, even in p,
Some but not all are also gapped at early times.

5 10

/1R

Y™ (0, ¢) ~ cos(mg) P (cos 0)

Jasmine Brewer (CERN) JB, Weiyao Ke, Li Yan, Yi Yin (in progress) 30



Beyond Bjorken expansion

TR

Energy gap of H™' = H"™! +

Hydro modes
65 | Hydrodynamic modes are gapped at late times.

m > 2, even in p,
Some but not all are also gapped at early times.
odd in p, { gapp y

Some non-hydro modes are gapped at early times

—

5 10

/1R

Y™ (0, ¢) ~ cos(mg) P (cos 0)

Jasmine Brewer (CERN) JB, Weiyao Ke, Li Yan, Yi Yin (in progress) 31



Beyond Bjorken expansion

Hydro modes

m > 2, even in p,

—

/1R

Y™ (0, ¢) ~ cos(mg) P (cos 0)

10

TR

Energy gap of H™' = H"™! +

Hydrodynamic modes are gapped at late times.
Some but not all are also gapped at early times.

Some non-hydro modes are gapped at early times

Attractor associated with gapped modes, which are not the same as hydrodynamic modes

Jasmine Brewer (CERN)

JB, Weiyao Ke, Li Yan, Yi Yin (in progress) 32



Early-time attractor not associated with hydrodynamic modes
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Early-time attractor not associated with hydrodynamic modes
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Attractor associated with non-hydrodynamic mode
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Early-time attractor not associated with hydrodynamic modes
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No attractor associated with hydrodynamic mode

Jasmine Brewer (CERN) JB, Weiyao Ke, Li Yan, Yi Yin (in progress) 35



Summary and Outlook

04t full solutions
Connection between attractor and .
far-from-equilibrium slow modes © M
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Beyond Bjorken, slow modes at early
times are qualitatively different (including
in number) than hydrodynamic modes



Scaling solution as ground state of Fokker-Planck
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Smatercocupancy ot e Bruno Scheihing-Hitschfeld
Berges, Boguslavski, Schlichting, Venugopalan [1311.3005] MIT graduate student
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