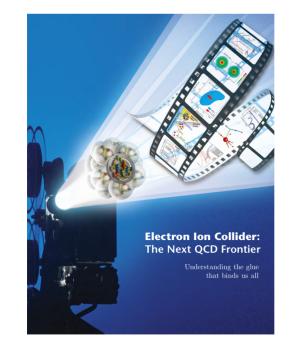
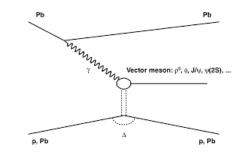
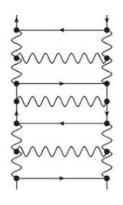

EIC Physics (mostly eA) that would benefit from lower energies and/or a second detector

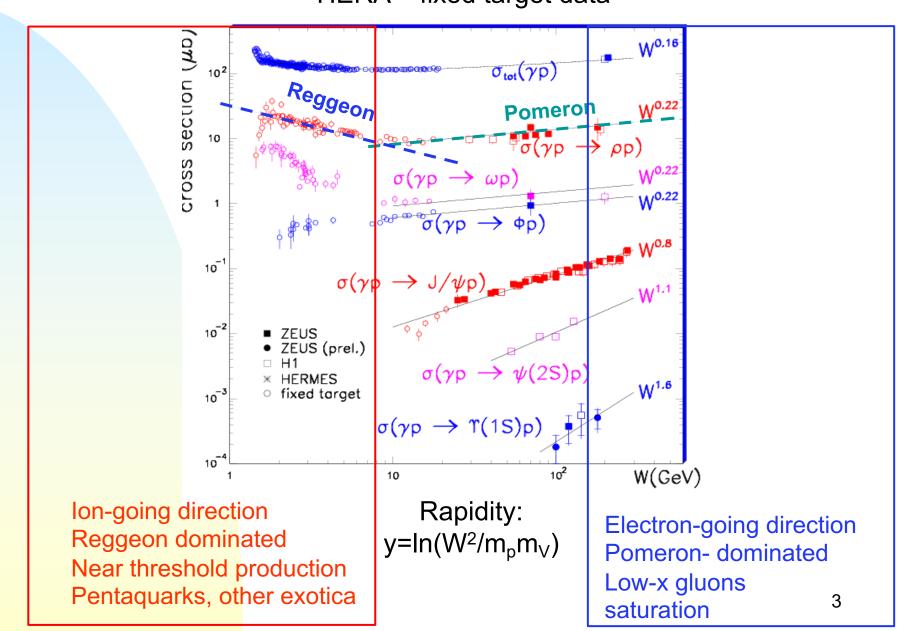

Spencer Klein, LBNL

Presented at the IR2@EIC Workshop March 17-19, 2020

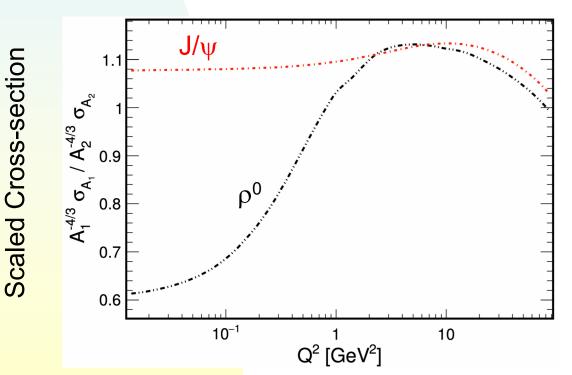
- Photo & electroproduction at an EIC
- Bjorken-x and rapidity
 - Near threshold photoproduction
 - Low-x production
- Charged photoproduction & the structure of exotics
- Backward photoproduction via baryon exchange & baryon stopping*
- Conclusions


*Work done in collaboration with Aaron Stanek & Sam Heppelman



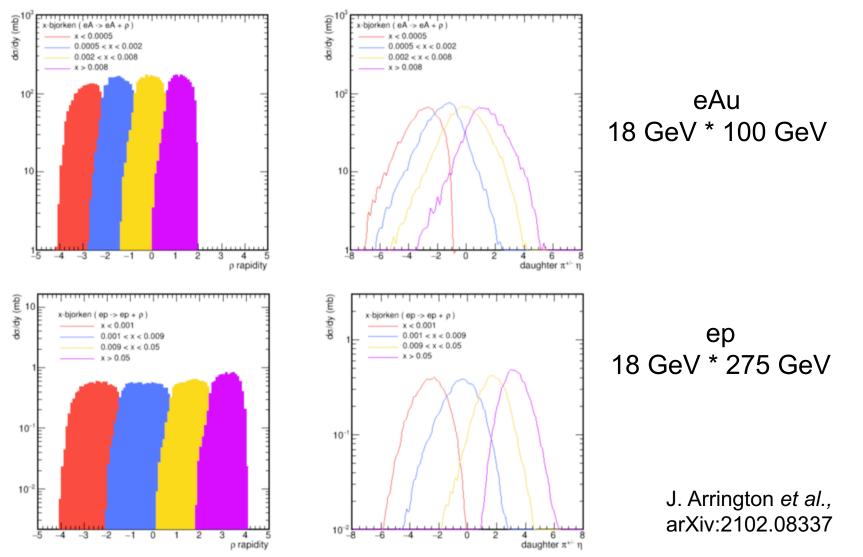

Photoproduction and Electroproduction

- Two models
- Gluon exchange
 - Lowest order is 2-gluon exchange
 - Higher orders is gluon ladder
- Pomeron + Reggeon exchange
 - Pomeron is gluon ladder
 - J^{PC}=0⁺⁺ explains vector meson dominance
 - Absorptive part of the potential
 - Reggeon involves quark exchange
 - meson trajectories (q-qbar)
 - Wide range of spin, parity and charge
 - Allows production of pentaquarks, other exotica etc.



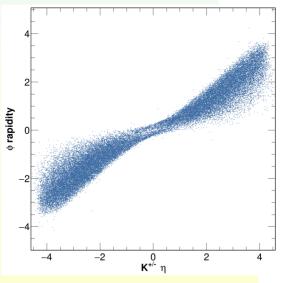
Pomerons, Reggeons and kinematics HERA + fixed target data

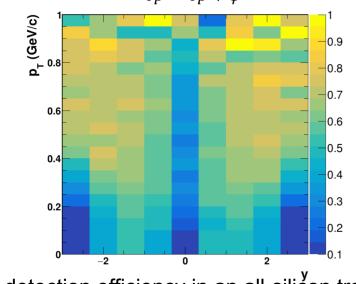
Photoproduction vs. electroprodution


- Most EIC attention is on electroproduction (Q² > 1 GeV²)
- Photoproduction (Q² < 1 GeV²) is critical for studying shadowing, which should disappear at large Q²
 - Good acceptance is needed for vector mesons at low p_T
- Shadowing is larger for lighter mesons
 - ρ/ϕ are experimentally important

From eSTARlight. Similar plot by Mantyssari and Venugopalan, Phys. Lett. B **781**, 664 (2018)

The $\rho^{\rm 0}$

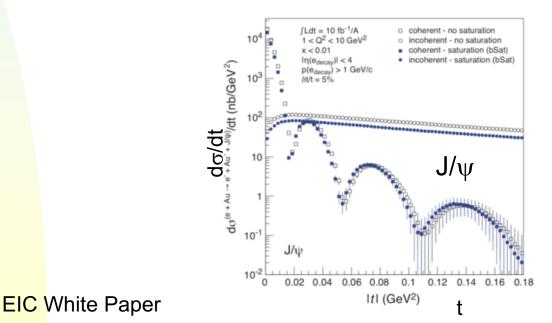

- 10⁻⁴ < x < 1 corresponds to -4 < y < 4</p>
- Coverage up to rapidity |y| requires coverage to |η| > |y|+1


5

The ϕ

- Φ ->K⁺K⁻ is the only viable decay mode
 - - Relationship between kaon $<\eta>$ and $\phi <y>$ is nonlinear
 - Reduces detection efficiency at large |y|
- For photoproduction near y=0, kaons have p=135 MeV/c
 - Highly ionizing
 - Requires low B field and very low material to detect
- J/ ψ & heavier mesons well handled by reference detector

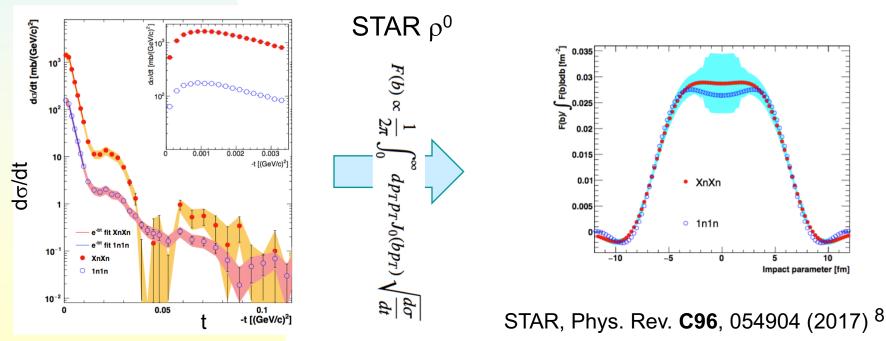
Rapidity vs. kaon pseudorapidity



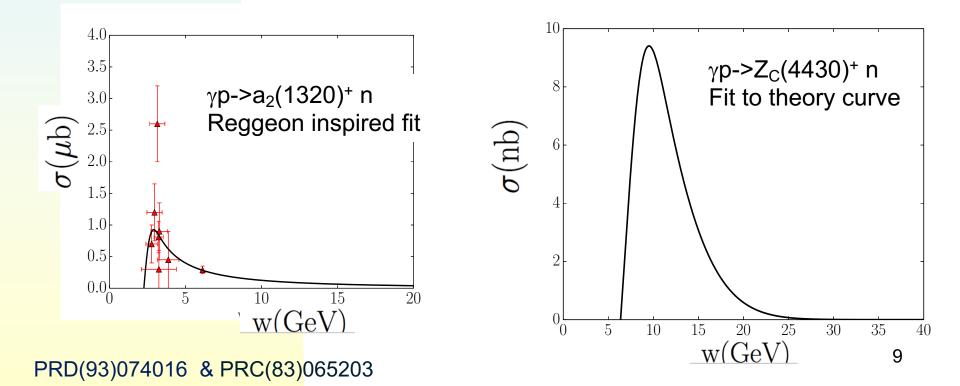
 ϕ detection efficiency in an all-silicon tracker ⁶

Separating Coherent and Incoherent production

- In the Good-Walker paradigm, coherent photoproduction is sensitive to the average nuclear shape, while the incoherent production is sensitive to event-by-event fluctuations
 - Need 500:1 coherent:incoherent separation at 2nd minimum
 - Neutron or proton emission is easy, but there are excitations that decay by emitting MeV (in the target frame) photons
 - Situation murky; requires good acceptance for far-forward E< 100 MeV

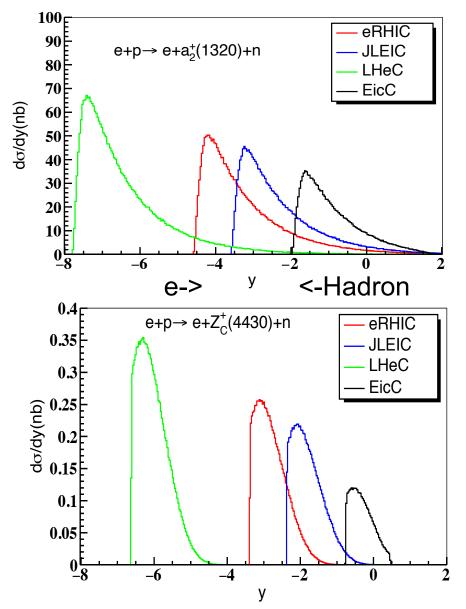

Lead preferred over gold. It has no low-lying, long-lived states

7

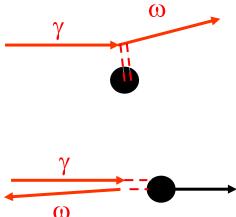

Observing diffractive dips

- do/dt for coherent photoproduction probes the transverse gluon distribution in nuclei – like GPDs, but for nuclei.
- Requires good measurement of t ~ p_{T,Pomeron}²
- $P_{T,VM} = P_{T,Pomeron} \bigoplus P_{T,photon} \bigoplus Resolution$
 - Need photon p_T to accurately determine Pomeron p_T
 - Observe scattered electron down to low Q²
 - Limited by beam emittance; easier at higher k/E_e

Reggeon exchange and forward production


- Examples: the $a_2^+(1320)$ standard candle and the exotic $Z_c^+(4430)$
- Use data/calculations of σ(γp->X+n) as input to eSTARlight to predict dσ/dy for the same process in EIC collisions/
 - > Use the same Q² scaling as the ρ (for the a₂) and J/_y (for the Z_c)

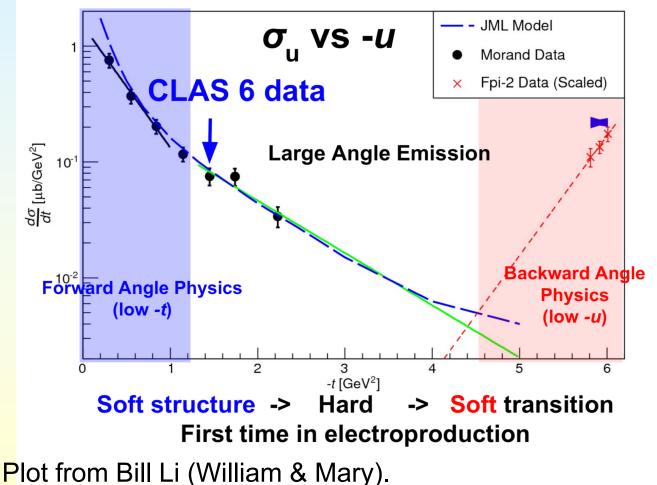
a₂⁺(1320) and Z_c⁺(4430) production in ep collisions at the EICs


- The a₂⁺(1320) is mainly at negative rapidity
 - σ ~80 nb at eRHIC
 - Copiously produced
- The Z_c⁺(4430) is heavier, and so somewhat more centrally produced.
 - σ is 0.26 nb at eRHIC
- Both require good ion-going acceptance to be observable
- Both might be easier to observe at lower beam energies

SK and Ya-Ping Xie, PRC 100, 024620 (2019)

Backward meson production

- Data from fixed-target experiments (including JLab), show that photoproduction can also occur in the backward production
 - Model via a baryon exchange trajectory
- Normally, photoproduction is maximal when t (momentum transfer from target) is small
 - dσ/dt ~ exp(-Bt)
 - B~ hbar/target size
- In baryon exchange, in the CM frame, the meson scatters backward 180 degrees causing the baryon to recoil
 - In CM frame, baryon and photon/meson trade momentum
 - Mandelstam u is small, but t is large (t>Q²)
- How does an intact baryon recoil at high energies? Similar to baryon stopping in RHI collisions

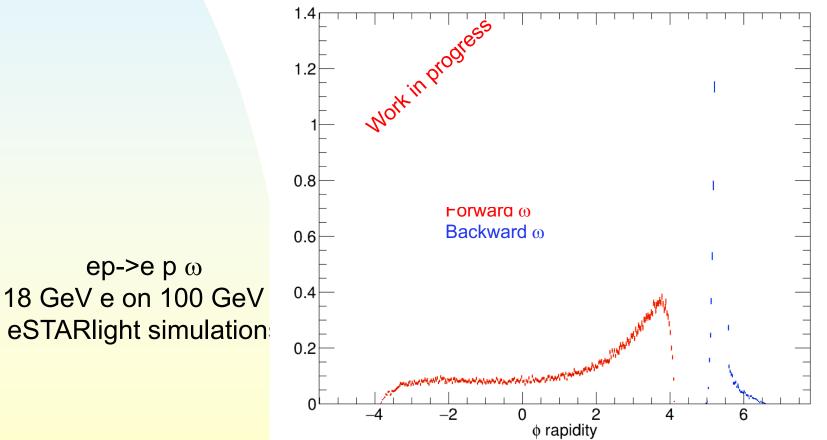


γ**p ->** ω**p+** ρ**p**

Electroproduction data from Clas 6 at Jlab

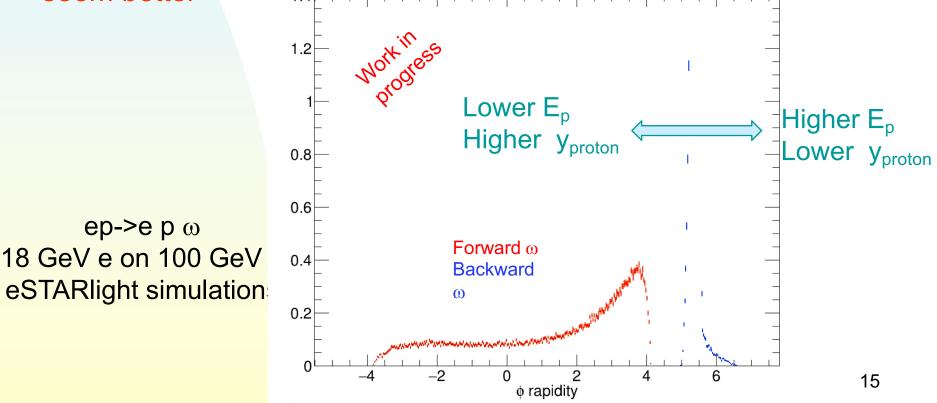
Forward & backward interactions are soft; intermediate is hard

 $\gamma^* + p \rightarrow p + \omega, W = 2.47 \text{ GeV}, Q^2 = 2.35 \text{ GeV}^2$

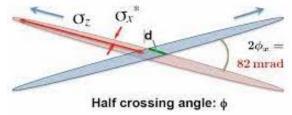


Parameterization of backward γp -> ωp

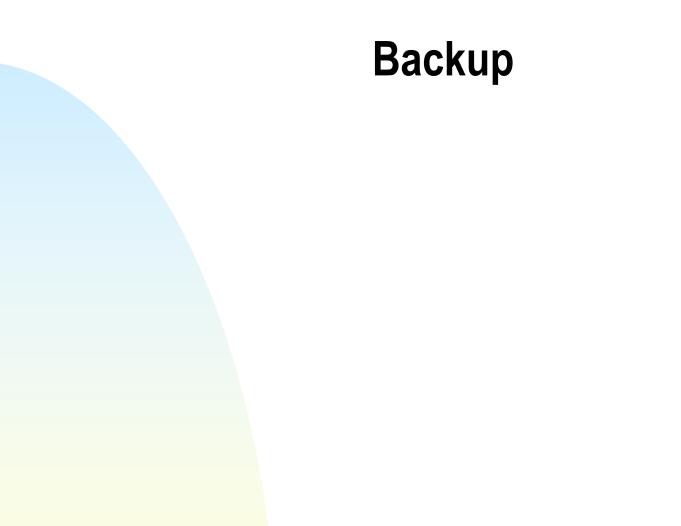
- o is best studied backward photoproduction case
 - Fit to data from two experiments
- Assume same Reggeon-like form as forward production:
 - $d\sigma/dt|_{t=0} \sim A (s/1GeV)^B$ embodies physics of reaction
 - $d\sigma/dt \sim exp(-Ct)$ accounts for form factor (size) of target
 - Swap u for t, to match behavior of backward kinematics
- $d\sigma/du|_{u\sim 0} = A (s/1GeV)^B$
 - A = 4.4 μb/GeV²
 - A=180 μb/GeV² for forward ω photoproduction
 - ◆ B = -2.7
 - + B=-1.92 for forward ω photoproduction
- dσ/du ~ exp(-Cu), with C=-21 GeV⁻²
 - Similar slope as C in e^{Ct} term for forward γp -> ρp
- Rate is few % of the forward rate for k~ GeV
 - Falls off a bit faster with increasing energy.
 - Cross-sections are large enough to be easily accessible.


EIC backward production kinematics

- An ω at near-beam rapidity, and a mid-rapidity proton
 - The proton is easily detectable
 - The forward vector meson looks tough.
 - Charged particle tracking problematic (?)
 - + ω-> π^0 γ is a promising channel, since it is fully calorimetric

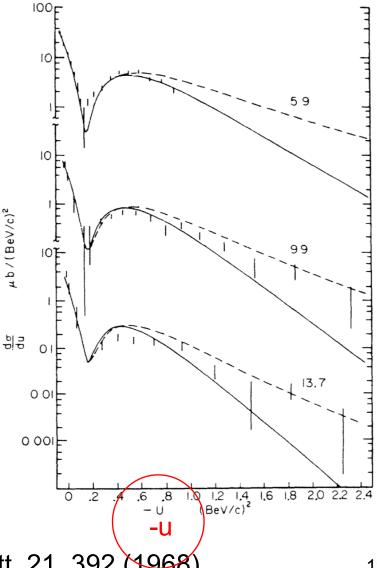

Beam energy dependence of ω peak

- For 275 GeV proton beams, y_{ω} rapidity ~ 6.5
- For 41 GeV protons beams
 - Proton rapidity = 0.0 -> typical ω rapidity is 4.6
 - Proton rapidity = 4.0 -> typical ω rapidity is 3.7
- Need to explore full phase space, but lower proton beam energies seem better
 1.4


How would a 2nd detector/low energy improve the rapidity/energy coverage?

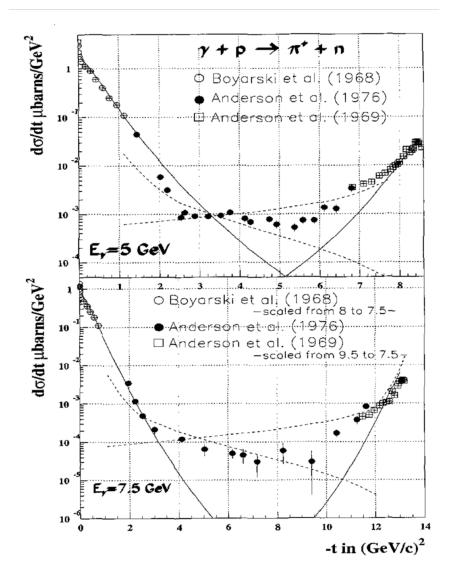
- Low-energy running shifts the forward region toward mid-rapidity.
 - Near-threshold production, pentaquarks etc. become more central
- This does not work on the low-x side
 - Good rapidity coverage is needed to exploit the full EIC energy
- Another partial solution: instrument the IR above & below the plane where the beams diverge

Conclusions


- Vector meson and other exclusive/semi-exclusive production reactions can challenge proposed EIC designs.
- Very wide pseudorapidity coverage is required to study vector meson production over the full range of Bjorken-x.
- Near-threshold production and Reggeon-exchange production, including exotica requires good acceptance in the ion-going direction.
 - Running at a reduced ion beam energy will shift this production toward mid-rapidity.
- Excellent far-forward ion-going detectors are required to separate coherent and incoherent photoproduction, and to study.
- Backward production reactions lead to mid-rapidity baryons and far-forward mesons. The later are a detector challenge, requiring more study.

$\pi^+p \rightarrow \pi^+p$ elastic scattering

- 5.9 GeV < E_π < 13.7 GeV
 Above the resonance region
- Clear peak near u=0
 - Elastic scattering in the backward direction
- Diffractive minima visible in uspectrum


Looks a lot like a form factor

V. Barger and D. Cline, Phys. Rev. Lett. 21, 392 (1968).

γp->π⁺n

- Data from multiple experiments
 Data exists for 4 GeV < E_γ < 16 GeV
 - Again, above the resonance region

M. Guidal et al., Phys. Lett. B400, 6 (1997).

Backward $\boldsymbol{\omega}$ data for fit

The ω is one of the better studied mesons for backward production. There is more data available than for the ρ .

Reasonable lever arm for photon energy.

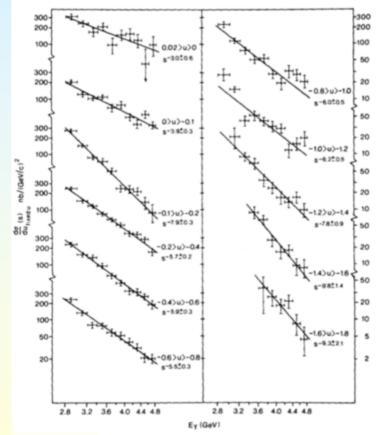
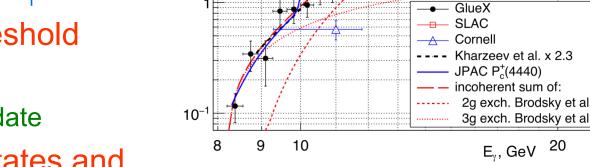


TABLE I. The compiled data. Errors on original data were around 25% of the listed value. Error due to transcription from figure is estimated to be less than 5%.

E_{γ}	$d\sigma/du(u \approx 0)$	Source
GeV	nb/GeV^2	
2.9	200	Sibirtsev et al. ⁶ Figure 1
3.0	300	Clifft et al. ⁴ Figure 3
3.0	200	Sibirtsev et al. ⁶ Figure 7
3.2	240	Clifft et al. ⁴ Figure 3
3.3	110	Sibirtsev et al. ⁶ Figure 7
3.5	170	Clifft et al. ⁴ Figure 2
3.5	170	Sibirtsev et al. ⁶ Figure 1
3.5	100	Sibirtsev et al. ⁶ Figure 7
3.6	210	Clifft et al. ⁴ Figure 3
3.6	100	Sibirtsev et al. ⁶ Figure 7
3.8	90	Clifft et al. ⁴ Figure 3
3.9	60	Sibirtsev et al. ⁶ Figure 7
4.0	150	Clifft et al. ⁴ Figure 3
4.1	70	Sibirtsev et al. ⁶ Figure 7
4.2	160	Clifft et al. ⁴ Figure 3
4.3	40	Sibirtsev et al. ⁶ Figure 7
4.4	120	Clifft et al. ⁴ Figure 3
4.4	30	Sibirtsev et al. ⁶ Figure 7
4.5	50	Sibirtsev et al. ⁶ Figure 7
4.6	30	Sibirtsev et al. ⁶ Figure 7
4.7	75	Clifft et al. ⁴ Figure 2
4.7	80	Sibirtsev et al. ⁶ Figure 1
4.8	100	Clifft et al. ⁴ Figure 3


⁴R. Clifft *et al.*, Physics Letters **72B**, 144 (1977).
⁵B.-G. Yu and K.-J. Kong, Physical Review D **99** (2019).
⁶R. Sibirtsev *et al.*, arXiv:nucl-th/0202083v1 (2002).

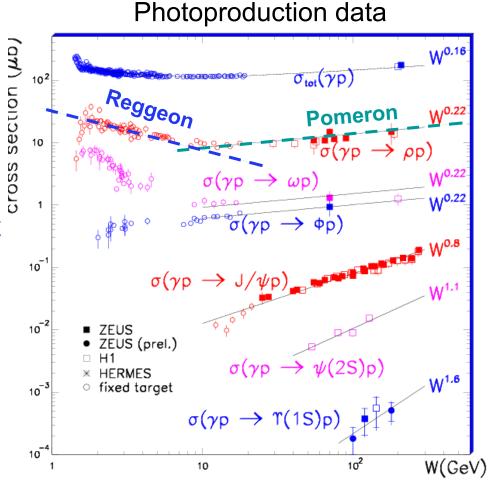
21

Near threshold quarkonium production

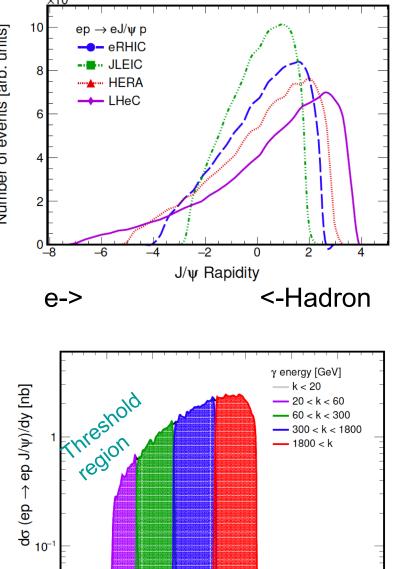
- Near-threshold quarkonium production is sensitive to new mechanisms $\sigma(\gamma p \rightarrow J/\psi p)$, nb 10 (i. e. 3-gluon exchange)
 - GlueX data favors a mix gluon exchange for J/ψ

- Sensitive to near-threshold
 - $P_{C}^{+}(4440) == J/\psi p$
 - Pentaquark candidate

- EIC will study ψ ', Y states and probe the Q² dependence of multiple resonances
- For nuclei, near-threshold or sub-threshold production is sensitive to short-range nuclear correlations.
- Requires good acceptance in the ion-going direction


Photoproduction & electroproduction in eSTARlight

- Convolution of photon flux from electron with σ(γp->Vp)
 Both depend on Q²
- Weizsacker-Williams photon flux (with non-zero Q²)
- VM cross-sections parameterized from HERA data/theory....
 - Reggeon and Pomeron exchange
 - Q² dependence via a power law from HERA data
- Other cross-sections from theory predictions
- Nuclear targets included with a Glauber calculation
- Vector mesons retain the photon spin
 - For Q² ~ 0, transversely polarized
 - As Q² rises, longitudinal polarization enters
 - Spin-matrix elements quantified with HERA data
- Embodied in eSTARlight code, available at: https://github.com/eic/estarlight/


Pomerons and Reggeons in photoproduction

- HERA photoproduction cross-sections well fit by
- $\sigma(W) = XW^{\epsilon} + YW^{-\eta}$
 - W=γp CM energy
- *XW*[∈]: Pomeron (gluons)
 - $\epsilon \sim > 0.2 \text{meson dependent}$
 - ♦ J^{PC}=0⁺⁺
- *YW*^{-η}: 'Reggeon' (~~qqbar)
 η~~1.5
 - Summed light-quark meson trajectories
 - ~valence quarks
 - Zero for φ, J/ψ, etc.
 - Range of spin/parity
 - Q² dependence power law

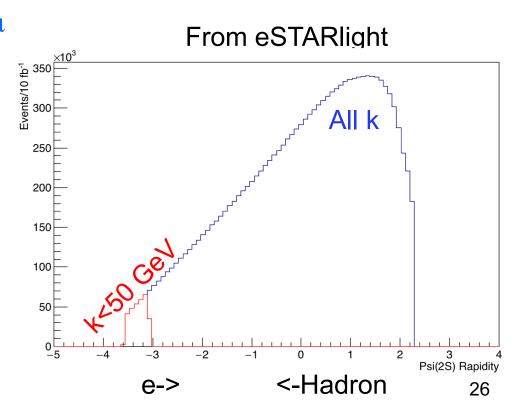
EIC photoproduction kinematics

- $k = \frac{M}{2} \exp(y)$
- Maps photon energy onto rapidity $k = \frac{M}{2} \exp(y)$ y=ln(2k/M) Reggeon activity strongest at low photon energies
 - Requires good acceptance in the hadron-going direction
- Highest photon energies correspond to electron-going direction
 - Need good e-going acceptance

-2

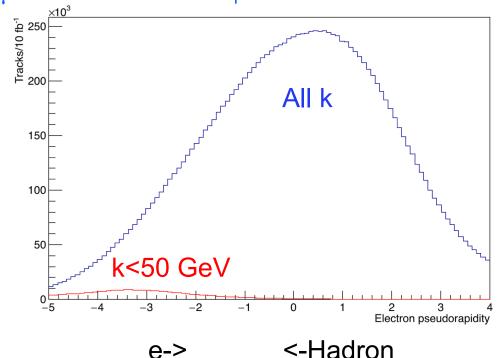
2

6


n

J/ψ rapidity

SK & M. Lomnitz, Phys. Rev. C99, 015203 (2019)


Ψ (2S) & Y photoproduction at eRHIC

- 18 GeV e⁻ on 275 GeV protons
- Ψ(2S): σ=1.4 nb (1/6 of σ(J/ψ))
 - 14 million events in 10 fb⁻¹
- 300,000 events with photon energy <50 GeV (target frame)
 - Ψ (2s) threshold region is 3.5 < y < 3.0 for this configuration
 - ~ 2,800 each Ψ(2S)->ee, μμ
- σ(Y(1S))=0.01σ(ψ')
 - ♦ 140,000 events/10fb⁻¹
 - ~3,000 each to ee, μμ
 - ~3,000 near-threshold events
 - ~75 each to ee, μμ
 - More central than ψ'

Ψ (2S)->ee lepton pseudorapidities

- Lepton pseudorapidity depends on Y(2S) rapidity, p_T and polarization (which depends on Q²)
- Leptons from most near-threshold (k<50 GeV target frame) ψ(2S)->ll decays have -5<y<-2
 - Good acceptance required in hadron-going direction
 - N.b. Br(ψ (s)->ee or $\mu\mu$ is 0.7%. Plus J/ $\psi\pi^+\pi^-$
- Rates for Y(1S) smaller - usable.
- Higher ψ states accessible

27

Expected event rate for vector mesons, $a_2^+(1320)$ and Z_C^+

- Total cross sections and expected events for vector mesons and two charged particles in ep collisions
 - ♦ 10 fb⁻¹ integrated luminosity

	Events ($0 < Q^2 < 1.0 GeV^2$)			Events $(Q^2 > 1.0 GeV^2)$				
	ρ	ϕ	J/ψ	ψ'	ho	ϕ	J/ψ	ψ'
eRHIC -ep	$50~{ m giga}$	$2.3 { m ~giga}$	85 mega	14 mega	140 mega	$17 \mathrm{mega}$	5.7 mega	1.2 mega
eRHIC -eA	44 giga	2.8 mega	100 mega	16 mega	$37 \mathrm{mega}$	5.6 mega	3.9 mega	$960 \mathrm{kilo}$
JLEIC -ep	$37~{ m giga}$	$1.6 { m ~giga}$	$39 \mathrm{mega}$	6.0 mega	$100.0~{\rm mega}$	$12.0~{\rm mega}$	$2.7 \mathrm{mega}$	550 kilo
JLEIC -eA	$28 \mathrm{giga}$	$1.6~{ m giga}$	$28~\mathrm{mega}$	$3.9 \mathrm{mega}$	22 mega	3.2 mega	1.2 mega	250 kilo
LheC -ep	$100 {\rm ~giga}$	$5.6~{ m giga}$	470 mega	78 mega	$260~{\rm mega}$	$37 \mathrm{mega}$	$29~\mathrm{mega}$	6.3 mega
LHeC -eA	$110 {\rm ~giga}$	$8.2~{ m giga}$	$720~{\rm mega}$	$140~{\rm mega}$	$100~{\rm mega}$	16 mega	27 mega	7.2 mega

		Eve	nts $(0 < 0$	$Q^2 < 1.0 Ge$	eV^2)	Events $(1.0 \text{GeV}^2 < \text{Q}^2 < 5.0 \text{GeV}^2)$			
		eRHIC	JLEIC	LHeC	EicC	$\mathbf{e}\mathbf{RHIC}$	JLEIC	LHeC	EicC
$a_{2}^{+}($	(1320)	0.79 giga	0.69 giga	1.06 giga	0.47 giga	5.1 mega	5.0 mega	5.2 mega	4.0 mega
Z_c^+ ((4430)	$2.6 \mathrm{mega}$	2.2 mega	3.6 mega	$0.94~\mathrm{mega}$	0.12 mega	$0.12 \mathrm{mega}$	0.12 mega	68.0 kilo

Theoretical approach - I

GPD-like model, with Transition Distribution Amplitude quantifying baryon trajectories.

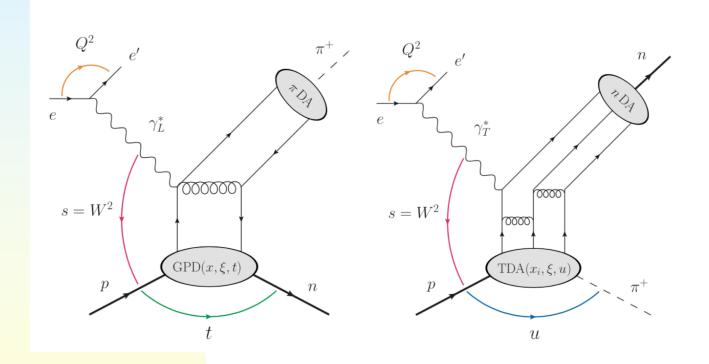
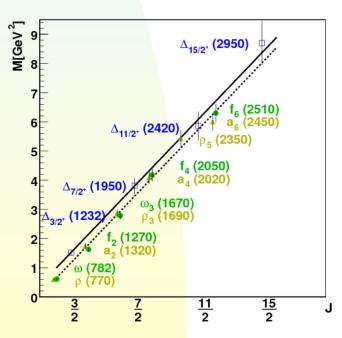
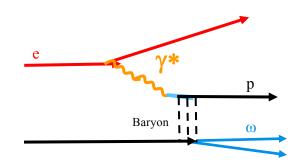
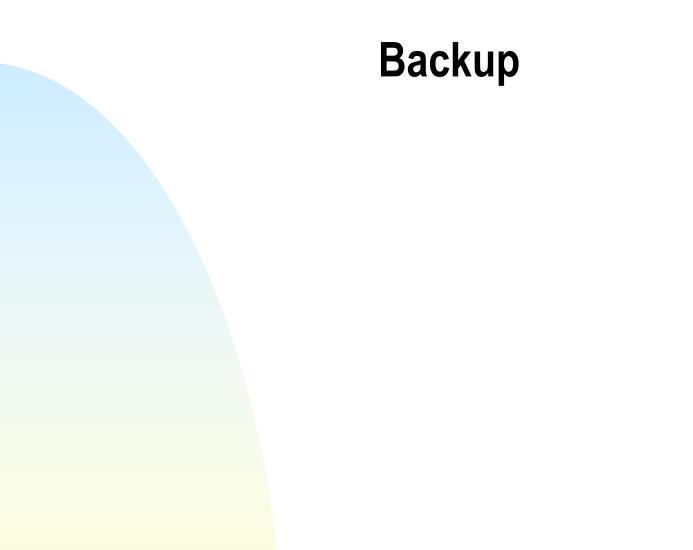



Diagram from K. Park et al., Phys. Lett. B780, 340 (2018)

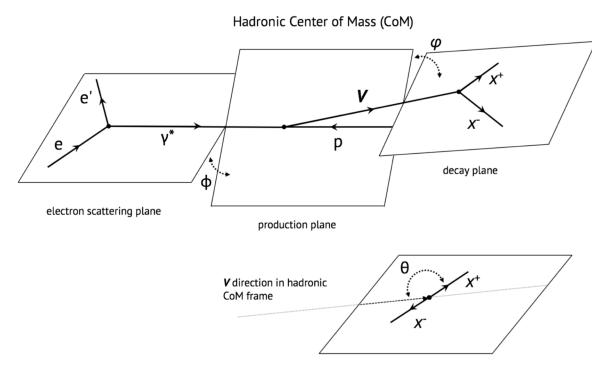

Theoretical approach II – Baryon trajectories

- For baryonic Regge trajectory
 - $\sigma(W) = XW^{\epsilon} + YW^{-\eta}$
 - Replace t with u, and much familiar behavior is restored.
 - Similar to meson trajectories
- Key trajectories: N, Δ ,

• Λ/Σ for strangeness (not today)

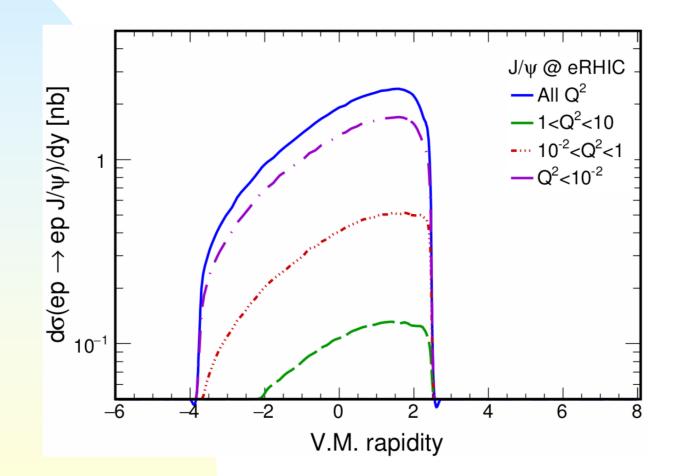


Implications for baryon stopping


- Conventional wisdom: Regge phenomenology only matters at low energy
 - But... the relevant energy is the dipole-baryon CM energy.
 - soft dipole -> small CM energy.
 - Low-energy UPC photon
 - + A soft virtual π

- A low-x q-qbar dipole
- Other configuration within an incident nucleus
- The baryon recoils but remains intact
 - Transport over multiple units in rapidity.
 - Like baryon stopping.
 - Phenomenology is very reminiscent of the baryon junction model.
 - Are there connections?

Vance, Gyulassy and Wang, Phys. Lett. B443, 45 (1998)



Angular definitions

V rest frame

Rapidity vs. Q²

γ**p->**ω**p** data

TABLE I. The compiled data. Errors on original data were
around 25% of the listed value. Error due to transcription
from figure is estimated to be less than 5%.

E_{γ}	$d\sigma/du (u\approx 0)$	Source
GeV	nb/GeV^2	
2.9	200	Sibirtsev et al. ⁶ Figure 1
3.0	300	Clifft et al. ⁴ Figure 3
3.0	200	Sibirtsev et al. ⁶ Figure 7
3.2	240	Clifft et al. ⁴ Figure 3
3.3	110	Sibirtsev et al. ⁶ Figure 7
3.5	170	Clifft et al. ⁴ Figure 2
3.5	170	Sibirtsev et al. ⁶ Figure 1
3.5	100	Sibirtsev et al. ⁶ Figure 7
3.6	210	Clifft et al. ⁴ Figure 3
3.6	100	Sibirtsev et al. ⁶ Figure 7
3.8	90	Clifft et al. ⁴ Figure 3
3.9	60	Sibirtsev et al. ⁶ Figure 7
4.0	150	Clifft et al. ⁴ Figure 3
4.1	70	Sibirtsev et al. ⁶ Figure 7
4.2	160	Clifft et al. ⁴ Figure 3
4.3	40	Sibirtsev et al. ⁶ Figure 7
4.4	120	Clifft et al. ⁴ Figure 3
4.4	30	Sibirtsev et al. ⁶ Figure 7
4.5	50	Sibirtsev et al. ⁶ Figure 7
4.6	30	Sibirtsev et al. ⁶ Figure 7
4.7	75	Clifft et al. ⁴ Figure 2
4.7	80	Sibirtsev et al. ⁶ Figure 1
4.8	100	Clifft et al. ⁴ Figure 3

⁴R. Clifft *et al.*, Physics Letters **72B**, 144 (1977).
⁵B.-G. Yu and K.-J. Kong, Physical Review D **99** (2019).
⁶R. Sibirtsev *et al.*, arXiv:nucl-th/0202083v1 (2002).