MAXIMIZING PHYSICS REACH FOR DVMP

REQUIREMENTS FOR A SECOND IR DETECTOR IN REGARD TO J/PSI AND **UPSILON PRODUCTION**

SYLVESTER JOOSTEN sjoosten@anl.gov

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

First IR2@EIC Workshop March 18, 2021

EXCLUSIVE QUARKONIUM PRODUCTION What do we know?

- J/ψ photo-production well-constrained at high energies
- Y(1S): not much available
- Almost no data near threshold
- Electro-production almost completely unconstrained

L_{max}

EXCLUSIVE QUARKONIUM PRODUCTION What do we know?

Near Threshold:

- Origin of proton mass, trace anomaly of the QCD EMT
- Gluonic Van der Waals force, possible quarkonium-nucleon/nucleus bound states
- **Mechanism** for quarkonium production
- Test **SRC universality** with a gluonic probe

noto-production well-constrained at high energies

/-

- Y(1S): not much available
- ost no Nata noar threshold

 J/ψ at JLab Y(1s) at EIC - Elec almost completely unconstrained

Lmax

EXCLUSIVE QUARKONIUM PRODUCTION What do we know?

Near Threshold:

- Origin of proton mass, trace anomaly energies: of the QCD EMT
- Gluonic Van der Waals force, possible quarkonium-nucleon/nucleus bound states
- Mechanism for quarkonium production
- Test **SRC universality** with a gluonic probe

Electro-Production at high

- Access Gluon GPD: Full 3D tomography of the gluonic structure of the nucleon
- Matter radius of nuclei Sensitive to onset of **saturation** L-T Separation and Q² dependence of *R* for quarkonium production

- (1S): not much available
- no Hata noar threshold l/ψ at JLab '(1s) at EIC - Elec

Y(1S) PHOTOPRODUCTION AT EIC ...Threshold measurement possible!

- Quasi-real production at an EIC
- Both electron and muon channel
- 2D cross section (in |t| and W), additional lever lacksquarearm in Q² also available (electroproduction)
- Fully exclusive reaction lacksquare
- Can go to near-threshold region

Y(1S) PHOTOPRODUCTION AT EIC ...Threshold measurement possible!

- Quasi-real production at an EIC
- Both electron and muon channel
- 2D cross section (in |t| and W), additional lever lacksquarearm in Q² also available (electroproduction)
- Fully exclusive reaction ullet
- Can go to near-threshold region

- **Y(1s)** production possible at threshold!
- Sensitivity down to $\sim 10^{-3}$ nb!

THRESHOLD PHYSICS AT HIGH ENERGIES?

What limits threshold physics at EIC?

- Reach toward lower values of W limited by experimental **resolution**, which imposes a lower limit on $y = P.q/P.k \sim 0.01$.
- This makes threshold J/ψ very hard to do, and limits sensitivity to threshold Y at higher beam energies.

In principle more threshold events with higher energies (as the virtual photon flux rises quickly for lower values of y)

Medium energy configuration factor of 2-3 better uncertainties compared to high-energy configuration due to better reach near threshold.

Setting	$T_{\Upsilon p}(0)$	$a_{\Upsilon p}$ (in fm)	B_{Υ} (ir
1	0	≃ 0	
	20.5 ± 0.9	0.016 ± 0.001	0.78 :
	87 ± 2	0.066 ± 0.001	3.23 :
2	0	$\simeq 0$	-
	20.5 ± 1.9	0.016 ± 0.001	0.78 :
	87 ± 4	0.066 ± 0.003	3.23

O. Gryniuk, S.Joosten et al. PRD 102, 014016 (2020)

PROJECTED RESULTS FROM YELLOW REPORT

Quantum anomalous energy from Upsilon photoproduction

...Assuming 100fb⁻¹

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

3D gluon imaging from J/ψ and Y DVMP

LEPTON

Where do the leptons go?

LEPTONS

Nominal rapidity coverage on scattered lepton covers entire xrange even at the highest energy

LEPTONS

Q² coverage for imaging not limited by nominal acceptance

Nominal rapidity coverage leads to some loss in statistics near threshold at all energies. More coverage above $\eta > 3.5$ would lead to (modest) boost in statistics.

RECOIL PROTONS REQUIRE FAR-FORWARD DETECTION Need continuous far-forward detection with roman pots and B0

10⁴

10³

10²

10

10⁴

10³

10²

10

counts

counts

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Proposed nominal far-forward system in YR can do the job for DVMP on the proton. Lower energies depend mostly on B0

Lower pT coverage may be important for exclusive coherent/incoherent reactions off nuclei

PHOTOPRODUCTION PERFORMANCE Nominal reference detector not optimized for exclusive quasi-real production

Pink: low-Q2 tagger Orange: nominal central detector with $|\eta| < 3.5$

Extended central detector acceptance below η < -3.5 will boost quasi real acceptance

Maybe easier, an extended low-Q2 tagger acceptance can dramatically increase rates

S. Joosten

CASE FOR MUON DETECTION

Why?

Control Bethe-Heitler background in backward region

Improved resolution

Different systematic uncertainties (cross check of electron-positron channel)

Double statistics (important for threshold region

 10^{3}

10²

10

Detector considerations

Muon detection does not necessarily need dedicated system:

- 1. Energy from tracking
- 2. PID through calorimetry (cluster profile in a sampling/imaging) calorimeter, and in the hadronic calorimeter)
- 3. Do not need perfect pion rejection, as exclusivity + narrow vector meson mass + requirement that there be 2 muons significantly reduces background

ARGUMENTS FOR A COMPLEMENTARY APPROACH

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Medium-energies maximize DVMP threshold reach: higher energies restricted by resolution at low y.

To maximize photoproduction (true for all energies): Good acceptance in backward region, and good low-Q² tagger

Higher-energy configurations more potent for GPD imaging due to greater photon flux, larger Q² coverage. Note, intrinsically already at larger x (large quarkonium mass shifts kinematics to higher x)

Medium and low energy in particular need higher luminosity to get balanced statistics for entire phase space

Comprehensive DVMP program needs high Iuminosity at both high and medium energies: $O(100 \text{ fb}^{-1} \sim 110 \text{ days at } 10^{34}/\text{cm/s})$

