TCS simulations for EIC

Daria Sokhan, Kayleigh Gates (University of Glasgow)

Pawel Sznajder (National Centre for Nuclear Research, Warsaw)

Recap

Itl: BH

Toy MC for TCS developed by Pawel Sznajder.

Generated variables:

$$Q^2, y, E_p, E_e, t, Q'^2, \theta, \phi, \phi_s$$

heta : angle between e+ and scattered proton in lepton CMS

 ϕ : Trento-phi (angle between leptonic and hadronic plane)

 ϕ_s : angle between leptonic plane and transverse component of target polarisation

Pure BH and pure TCS, no interference term yet.

Cuts applied:

$$\frac{\pi}{4} < \theta < \frac{3\pi}{4}$$

$$2 < Q'^2 < M_{J/\Psi}^2$$

t-cut not yet implemented

New: generated events passed through the eicsmear package (low-Q2 tagger excluded).

All yields are for 10 fm⁻¹ integrated luminosity

Recap: scattered electron

Scattered electron looks the same for both BH and TCS.

Ratio of TCS/BH hovers around ~1%

Scattered electron distribution (momenta, pseudo-rapidities) defined by the electron beam energy.

Quasi-real photon carries very low momentum

Scattered electron: acceptance and low-Q² tagger

Yellow: all generated

Purple: generated values for reconstructed events

Red dashed lines: acceptance of low- Q^2 tagger.

- Detection of the scattered electron in the central detector is only possible for the lowest energy setting, and for a small fraction of events.
- Low-Q² tagger would increase stats by a small fraction.

Recap: scattered proton

Distribution (pseudorapidity, momenta) defined by proton-beam energy.

TCS/BH ratio shows a Y-shaped nonuniform distribution for all energy settings.

Scattered proton transverse momentum: 5 GeV x 41 GeV

Loss of small number of events between central endcap and far-forward detectors, small gap just below eta = 6, loss of stats at eta > 7.7 (due to min p_T).

Addition of low-Q² tagger doesn't seem to change much.

Scattered proton transverse momentum: 18 GeV x 275 GeV

Loss of stats at eta > 8.4 (due to angular acceptance).

Addition of low-Q² tagger increases the statistics somewhat.

- Max forward / backward momenta defined by beam energies.
- Transverse momenta peak at 0.8 2 GeV/c

- Ratio of TCS/BH fairly uniform, edge effects possibly due to binning.
- Muon distributions: same

Lepton pair: acceptance effect on kinematics

Note: eta shown is of the leptons (e+e-)

Red dashed lines: acceptance of central detector

- At lowest collision energies, some very small loss of events with lowest Q'2
- At highest collision energies, very forward leptons are missed – loss of events at all Q^{'2}

$$t = (q' - q)^2$$

$$t = (p' - p)^2$$

Plots show generated t - reconstructed t, where t is calculated either using q and q' or p and p'

Yellow: events with a reconstructed electron Purple: events where a proton was also reconstructed

Resolution much better when using proton information. Unless low-Q² tagger can have phenomenal resolution, it's not needed for t.

Summary

- * BH dominates over TCS by ~ a factor of 100.
- * For all produced particles, TCS and BH distributions are practically identical.
- * Defining quasi-real photo production as $Q^2 < 0.1$, except for a small fraction of the statistics at the lowest electron beam energy, scattered electron falls outside of the central detector acceptance. Would need to be reconstructed from e^+e^- and p'.
- Low-Q2 tagger would enable a small fraction of scattered electrons to be detected at all collision energies.
- * Resolution on t is, however, >10 times better if t is calculated using incoming and scattered proton instead of scattered electron and the produced lepton pair this does not, however, include uncertainty on the beam momentum! Needs to be checked...
- * Scattered electron and produced lepton pairs well-separated in scattering angle: minimal background.
- ♣ No strong motivation for low-Q² tagger, except as additional background suppression and systematic checks.
- * At lowest collision energies, missing high-angle protons. Lowest-angle protons missing at all collision energies. Need to estimate fraction lost... Pushing acceptance of Roman Pots to the lowest p_T values possible is crucial.
- * Produced lepton pair fare well they're easily detectable in the central detector and only the very forward leptons are lost at the highest collision energies. This cuts into the Q'^2 distribution uniformly.
- * Next steps: full detector simulation...