Roman Pots and other LGAD Applications at the EIC

+ LGAD Consortium Meeting
Feb. 3rd, 2021
Alex Jentsch (Brookhaven National Laboratory)

Electron Ion Collider:

Far-forward physics at EIC

 e+p DVCS events with proton tagging.

Saturation (coherent/incoherent J/ ψ production)

Meson structure:
$>$ with neutron tagging $\left(\mathrm{ep} \rightarrow(\pi) \rightarrow \mathrm{e}^{\prime} \mathrm{nX}\right)$
$>$ Lambda decays ($\Lambda \rightarrow \mathrm{p} \pi^{-}$and $\Lambda \rightarrow \mathrm{n} \pi^{0}$)

e+He3 with spectator proton tagging.
e+He4 coherent He4 tagging.
e+Au events with neutron tagging to veto breakup and photon acceptance.
"थाता।

Far-forward physics at EIC

 e+p DVCS events with- The various physics channels require tagging of charged hadrons (protons, pions) or neutral particles (neutrons, photons) at veryforward rapidities ($\eta>4.5$).
$>$ Different final states require different detector subsystem for detection.
$>$ Different collision systems provide unique challenges due to magnetic rigidity difference between beam and final-state particles. $>$ Placing far-forward detectors uniquely challenging due to presence of machine components, space constraints, apertures, etc.

Far-Forward Interáction

EIC Interaction Region Layout

- Central detector spans 9 meters and is machine-component free (except for beam pipe).
- Hadron-going and electron-going directions after central detector fully instrumented.
- Hadron and electron beam cross with an angle of 25 mrad .

FF Hadron-Going Direction \& Acceptance

Reality of Particle Detectors: Smearing Contributions

- Angular divergence
- Angular "spread" of the beam away from the central trajectory.

- Gives some small initial transverse momentum to the beam particles.
- Crab cavity rotation
- Can perform rotations of the beam bunches in 2D.
- Used to account for the luminosity drop due to the crossing angle - allows for head-on collisions to still take place.
- Detector Choices

- Pixel size, RP transfer matrix, etc.

Impact of Smearing Contributions

- The various contributions add in quadrature (this was checked empirically, measuring each effect independently).

$\Delta p_{t, \text { total }}=\sqrt{\left(\Delta p_{t, A D}\right)^{2}+\left(\Delta p_{t, C C}\right)^{2}+\left(\Delta p_{t, p x l}\right)^{2}}$These studies based on the "ultimate" machine performance with strong hadron cooling.

- Beam angular divergence
- Beam property, can't correct for it - sets the lower bound of smearing.
- Subject to change (i.e. get better) - beam parameters not yet set in stone
- *using symmetric divergence parameters in x and y at 100urad.
- Vertex smearing from crab rotation
- Correctable with good timing (~35ps).
- With timing of $\sim 70 \mathrm{ps}$, effective bunch length is $2 \mathrm{~cm}->.25 \mathrm{~mm}$ vertex smearing ($\sim 7 \mathrm{MeV} / \mathrm{c}$)
- Finite pixel size on sensor
- 500 um seems like the best compromise between potential cost and smearing

e+p DVCS

- Full GEANT4 simulations with Roman Pots carried out.
- All acceptance \& smearing effects included.
$18 \times 275 \mathrm{GeV}$ e+p DVCS events generated with MILOU.

Low-|t| acceptance affected by beam optics/size of beam at Roman Pots - can be mitigated with different optics configurations.
$>$ With all smearing effects included, extraction of slope for Fourier Transform straightforward.

Roman Pots

$>$ Requirements:
$>$ Fast timing ($\sim 35 p s$) to remove vertex smearing effect from crab rotation.
>500 um x 500um pixels.
$>$ Radiation hardness (although not as stringent as LHC).
$>$ Large active area ($25 \mathrm{~cm} \times 10 \mathrm{~cm}$).
$>$ AC-LGADs cover these requirements in one package.

Expanding the Scope: Application for a Preshower Detector

High granularity/density h-endcap EMCal:
$2.5 \times 2.5 \mathrm{~cm}^{2}$ granularity at $z=3 \mathrm{~m}$

Pio merging prob vs p

Need to discriminate $\pi 0 \rightarrow \gamma \gamma$ up to $\sim 150 \mathrm{GeV} / \mathrm{c}$

Limited EMCal Performance

$>$ Particularly for non-projective geometry.
Preshower with granularity < 3 mm would do the job $>$ Two photons from $150 \mathrm{GeV} / \mathrm{c} \pi 0$ are separated by $\sim 5.5 \mathrm{~mm}$ in the EMCal.
$>$ Also improves photon position resolution and e/h separation.
$>$ Working on optimization of converter thickness.

B0-detectors

$$
(5.5<\boldsymbol{\theta}<20.0 \mathrm{mrad})
$$

- ~1.2 meters of longitudinal space in bore.
- Could potentially have several layers of silicon for tracking, and a few layers after for some EM calorimetry (compact).

GEANT4 Simulation

$>$ Tagging photons is important for differentiating between coherent and incoherent heavy-nuclear scattering.
> Potential inclusion of small EMCAL or preshower detector in the $\mathrm{B0}$ bore.
> Further study needed to assess.
$>$ Tagging photons further down-stream (ZDC) highly technically challenging.

Takeaways

- Requirements for FF detectors are well-established.
- LGADs suit the needs of the Roman Pots and Off-Momentum Detectors.
- Could also be used as a timing layer in the BO.
- The idea for a preshower using LGADs has been floated, and would be especially useful in the B0 after the tracking layers for tagging photons.
- More detailed studies underway.

Backup

Roman Pots

$\sigma(z)$ is the Gaussian width of the beam, $\beta(z)$ is the RMS transverse beam size.
ε is the beam emittance.

Low-pT cutoff determined by beam optics. $>$ The safe distance is 10σ from the beam center.
$>$ These optics choices change with energy, but can also be changed within a single energy to maximize either acceptance at the RP, or the luminosity.

Details/requirements studied using MILOU DVCS and e+He3
$0.0^{*}(10 \sigma c u t)<\boldsymbol{\theta}<5.0 \mathrm{mrad}$

$$
\sigma(z)=\sqrt{\varepsilon \cdot \beta(z))}
$$ events from various MC generators.

Reminder: Timing

For exclusive reactions measured with the Roman Pots we need good timing to resolve the position of the interaction within the proton bunch. But what should the timing be?

*based on "ultimate" machine performance.

- Because of the rotation, the Roman Pots see the bunch crossing smeared in \mathbf{x}.
- Vertex smearing $=12.5 \mathrm{mrad}$ (half the crossing angle) $* 10 \mathrm{~cm}=1.25 \mathrm{~mm}$
- If the effective vertex smearing was for a 1 cm bunch, we would have 0.125 mm vertex smearing.
- The simulations were done with these two extrema and the results compared.
$>$ From these comparisons, reducing the effective vertex smearing to that of the 1 cm bunch length reduces the momentum smearing to a negligible amount from this contribution.
$>$ This can be achieved with timing of ~ 35 ps ($1 \mathrm{~cm} /$ speed of light).

Roman Pots \& Machine Optics

The luminosity trade-off is about a factor of $\mathbf{2}$ between the different configurations.

Off-Momentum detectors

$>$ Off-momentum detectors used for tagging protons from nuclear breakup and decay products (e.g. π^{-}and protons).
> Placed outside the beam pipe after the B1apf dipole (last dipole before long drift section that leads to the Roman Pots).
e+d -> J/Psi + p + n (18x110GeV)

Neutron spectator/leading proton case.

Acceptance mostly limited by losses of very off momentum particles in quadrupoles.

Geometric Acceptances

Neutrons:

- Assume uniform acceptance for $0<\theta<4.5 \mathrm{mrad}$
- Limited by bore of magnet where the neutron cone has to exit.
- Up to 5.5 mrad on one side of the aperture.
- Resolutions (ZDC)
- Assume an overall energy resolution of $\sigma_{-} E / E=(50 \%) / \sqrt{ } E \oplus 5 \%$
- Assume angular resolution of $\sigma_{-} \theta=(3 \mathrm{mrad}) / \sqrt{ } \mathrm{E}$

Protons:

- Assume uniform acceptance for $6<\theta<13 \mathrm{mrad}$ (20mrad on the other side) - "B0 spectrometer"
- For protons with p_z/(beam momentum) > 0.6 - "Roman pots"
- 275 GeV : Assume uniform acceptance for $0.5<\theta<5.0 \mathrm{mrad}$
- 100 GeV : Assume uniform acceptance for $0.2<\theta<5.0 \mathrm{mrad}$
- 41 GeV : Assume uniform acceptance for $1.0<\theta<4.5 \mathrm{mrad}$
- For protons with $0.25<p _z /($ beam momentum) <0.6 - "Off-momentum Detectors"
- Assume uniform acceptance for $0.0<\theta<2.0 \mathrm{mrad}$
- for $2.0<\theta<5.0$ mrad, only accepted for $|\varphi|>1$ radian
- Resolutions (silicon reconstruction with transfer matrix or conventional tracking).
- $\mathrm{pt} \sim 3 \%$ for $\mathrm{pt}>550 \mathrm{MeV} / \mathrm{c}, \mathrm{p} \sim 0.5 \%$

Selected Physics Impact Studies

e+d Spectator Tagging
 Protons
 Protons

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

BeAGLE

Proton spectator case.
Particular process in BeAGLE: incoherent diffractive J/psi production off bounded nucleons.

Spectator kinematic variables reconstructed over a broad range. Bin migration is observed due to smearing in the reconstruction. Each plot shows the MC (closed circles), acceptance effects only (open circles), and full reconstruction (open squares).
$>$ In the proton spectator case, essentially all spectators tagged.
$>$ Active neutrons only tagged up to 4.5 mrad.

e+d Spectator Tagging

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

Ongoing Studies - Free Neutron Structure and Modifications.

- e+d spectator proton tagging yields access to free-neutron F_{2} via on-shell extrapolation.
- Further studies ongoing to examine nuclear modifications and effect of detector smearing.

