Simulation Statistics

By Sagar and Siddhant Under the guidance of Dr. Ankhi Roy

July 21, 2021

IIT Indore

Contents

Histograms for energy resolution of detectors by applying manual clustering, 100 MeV energy cut on aggregate towers and incorporating slice-wise calibration, for the following detector-particle pairs:

• Pion: CEMC + HCALIN + HCALOUT, FHCAL + FEMC

tphi: tower φ, ttheta: tower θ, teagg: tower energies aggregated in an event

gphi : generated ϕ , gtheta : generated θ , ge: generated energy

Simulation Parameters

- Particles: pi⁻
- Events: $150,000 \text{ pi}^-$ (100,000 \rightarrow 0-30 GeV/c, 50,000 \rightarrow 0-2 GeV/c)
- momentum (p): 0 to 30 GeV/c
- Pseudorapidity (η): -4 to 4
- Azimuth (Φ): $-\pi$ to π

Cuts:

- Detector-wise η cuts, intersection for combinations
- Detector-wise Elliptical cuts in dphi vs dtheta plots
- Energy cut on aggregated Towers (100 MeV)

FEMC (pi⁻)

Elliptical cut on dphi vs dtheta, Explicit η cut: 1.3 to 3.3, 100 MeV Energy Cut

Elliptical Cut: Only the towers within the elliptical region (centered at origin) are considered for further analysis.

Dimensions:

semi-minor axis = 0.13 units semi-major axis = 0.35 units

FHCAL (pi⁻)

Elliptical cut on dphi vs dtheta, Explicit η cut: 1.3 to 3.3, 100 MeV Energy Cut

Elliptical Cut: Only the towers within the elliptical region (centered at origin) are considered for further analysis.

Dimensions:

semi-minor axis = 0.15 units semi-major axis = 0.45 units

Elliptical cut on dphi vs dtheta Explicit η cut: 1.3 to 3.3 100 MeV Aggregate Tower Energy Cut

 $(te_{aqq} \rightarrow \sum (weight*te/calibrationFactor)/mean(\sum (weight*te/calibrationFactor))$

Each slice of (teagg-ge)/ge vs ge plot will be calibrated on the basis of dividing by a calibration factor which equals to the Mean of teagg/ge corresponding to that particular slice in this plot.

(te_{agg}-ge)/ge vs ge Explicit η cut: 1.3 to 3.3 100 MeV Aggregate Tower Energy Cut

After calibration

 $(te_{agg} \rightarrow \Sigma (weight*te/calibrationFactor)/mean(\Sigma (weight*te/calibrationFactor))$ calibrationFactor(ge) = mean(te/ge); detector-wise; function of ge

weight = mean(te/ge); detector-wise; independent of ge

(te_{agg}-ge)/ge vs ge Gaussian fit for the first slice (0-2 GeV)

σ_e_{agg} vs ge
Explicit η cut: 1.3 to 3.3
Elliptical Cut
100 MeV Aggregate Tower Energy Cut

σe refers to the standard deviation of the Gaussian fitted to a slice of the calibrated (teagg-ge)/ge vs ge plot.

Number of bins = 15 Bin Width = 2 GeV

Fit Parameters:

$$p_o = (0.0183350 +- 0.003643344)$$

 $p_1 = (0.619024 +- 0.0136655) GeV^{0.5}$

Explicit η cut: 1.3 to 3.3
Elliptical Cut
100 MeV Aggregate Tower Energy Cut

Reduced_ χ 2 of the Gaussians fitted to the slices of the calibrated (te_{agg}-ge)/ge vs ge plot.

Fitted Gaussians

The x-axes denote $\Delta e_{agg}/ge$

Fitted Gaussians

(te_{agg}-ge)/ge vs ge
Explicit η cut: -1.1 to 1.1
Elliptical cut
100 MeV Aggregate Tower Energy Cut

After calibration

 $(te_{agg} \rightarrow \sum (weight*te/calibrationFactor)/mean(\sum (weight*te/calibrationFactor))$ calibrationFactor(ge) = mean(te/ge) ; detector-wise; function of ge weight = mean(te/ge) ; detector-wise; independent of ge

 $\sigma_{-e_{agg}} \text{ vs ge}$ Explicit η cut: -1.1 to 1.1 Elliptical cut 100 MeV Aggregate Tower Energy Cut

σe refers to the standard deviation of the Gaussian fitted to a slice of the calibrated (te_{agg}-ge)/ge vs ge plot.

Number of bins = 10 Bin Width = 3 GeV

Fit Parameters:

$$p_o = (0.300277 +- 0.00584957)$$

 $p_1 = (0.181573 +- 0.0173502) \text{ GeV}^{0.5}$

Fitted Gaussians

The x-axes denote $\Delta e_{agg}/ge$

