Simulation Statistics

By Sagar and Siddhant Under the guidance of Dr. Ankhi Roy

July 21, 2021

IIT Indore

Contents

Histograms for energy resolution of detectors by applying manual clustering, 100 MeV energy cut on aggregate towers and incorporating slice-wise calibration, for the following detector-particle pairs:

• Electron: CEMC, EEMC, FEMC

Simulation Parameters

- Particles: e
- Events: $150,000 \, e^{-}(100,000 \rightarrow 0-30 \, \text{GeV/c}, 50,000 \rightarrow 0-2 \, \text{GeV/c})$
- momentum (p): 0 to 30 GeV/c
- Pseudorapidity (η): -4 to 4
- Azimuth (Φ): $-\pi$ to π

Cuts:

- Detector-wise η cuts
- Detector-wise Elliptical cuts in dphi vs dtheta plots
- Energy cut on aggregated Towers (100 MeV)

CEMC (e⁻)

Elliptical cut on dphi vs dtheta, Explicit η cut: -1.5 to 1.2, 100 MeV Energy Cut

Elliptical Cut: Only the towers within the elliptical region (centered at origin) are considered for further analysis.

Dimensions:

semi-minor axis = 0.10 units semi-major axis = 0.20 units

Elliptical cut on dphi vs dtheta Explicit η cut: -1.5 to 1.2 100 MeV Energy Cut

Each slice of (teagg-ge)/ge vs ge plot will be calibrated on the basis of dividing by a calibration factor which equals to the Mean of teagg/ge corresponding to that particular slice in this plot.

*The calibration factor for the first slice has been decided manually because the value from this plot doesn't seem to be optimum.

calibrationFactor of first slice = 0.96

(te_{agg}-ge)/ge vs ge Explicit η cut: -1.5 to 1.2 100 MeV Energy Cut

(te_{agg}-ge)/ge vs ge Gaussian fit of the first slice (0-2 GeV)

 σ_{agg} vs ge Explicit η cut: -1.5 to 1.2 Elliptical Cut 100 MeV Energy Cut

σe refers to the standard deviation of the Gaussian fitted to a slice of the calibrated (te_{agg}-ge)/ge vs ge plot.

(shown on slide 7)

Number of bins = 15 Bin Width = 2 GeV

Fit Parameters:

$$p_o = (0.0228119 +- 0.00130113)$$

 $p_1 = (0.0919356 +- 0.00676757) \text{ GeV}^{0.5}$
 $p_2 = (0.0123408 +- 0.00619618) \text{ GeV}$

Explicit η cut: -1.5 to 1.2 Elliptical cut, 100 MeV Energy cut

Mean of the Gaussians fitted to the slices of the calibrated (te_{agg}-ge)/ge vs ge plot.

Reduced_ χ 2 of the Gaussians fitted to the slices of the calibrated (te_{agg}-ge)/ge vs ge plot.

Fitted Gaussians

The x-axes denote $\Delta e_{agg}/ge$

CEMC (e⁻) Fitted Gaussians

Elliptical cut on dphi vs dtheta, Explicit $\hat{\eta}$ cut: -3.5 to -1.7, 100 MeV

Elliptical Cut: Only the towers within the elliptical region (centered at origin) are considered for further analysis.

Dimensions:

semi-minor axis = 0.10 units semi-major axis = 0.40 units

Elliptical cut on dphi vs dtheta Explicit η cut: -3.5 to -1.7 100 MeV Energy Cut

(te → te/calibrationFactor)

Each slice of (teagg-ge)/ge vs ge plot will be calibrated on the basis of dividing by a calibration factor which equals to the Mean of teagg/ge corresponding to that particular slice in this plot.

*The calibration factor for the first slice has been decided manually because the value from this plot doesn't seem to be optimum.

calibrationFactor of first slice = 0.93

(te_{agg}-ge)/ge vs ge Explicit η cut: -3.5 to -1.7 100 MeV energy cut

(te_{agg}-ge)/ge vs ge Crystal Ball fit of the first slice (0-3 GeV)

 $\sigma_{-e_{agg}}$ vs ge Explicit η cut: -3.5 to -1.7 Elliptical cut 100 MeV Energy Cut

σe refers to the standard deviation of the Gaussian fitted to a slice of the calibrated (te_{agg}-ge)/ge vs ge plot.

(shown on the slide 16)

Number of bins = 10 Bin Width = 3 GeV

Fit Parameters:

$$p_o = (0.00483728 +- 0.000953093)$$
 $p_1 = 0 \text{ GeV}^{0.5}$
 $p_2 = 0 \text{ GeV}$

Explicit η cut: -3.5 to -1.7 Elliptical cut, 100 MeV Energy cut

Mean of the Gaussians fitted to the slices of the calibrated (te_{agg}-ge)/ge vs ge plot.

Reduced_ χ 2 of the Gaussians fitted to the slices of the calibrated (te_{agg}-ge)/ge vs ge plot.

Fitted Crystal Ball Functions

Elliptical cut on dphi vs dtheta, Explicit η cut: 1.3 to 3.3, 100 MeV Energy

Elliptical Cut: Only the towers within the elliptical region (centered at origin) are considered for further analysis.

Dimensions:

semi-minor axis = 0.13 units semi-major axis = 0.40 units

Elliptical cut on dphi vs dtheta Explicit η cut: 1.3 to 3.3 100 MeV Energy Cut

Each slice of (teagg-ge)/ge vs ge plot will be calibrated on the basis of dividing by a calibration factor which equals to the Mean of teagg/ge corresponding to that particular slice in this plot.

*The calibration factor for the first slice has been decided manually because the value from this plot doesn't seem to be optimum.

calibrationFactor of first slice = 0.82

(te_{agg}-ge)/ge vs ge Explicit η cut: 1.3 to 3.3 100 MeV Energy Cut

FEMC (e) (te_{agg}-ge)/ge vs ge Gaussian fit of the first slice (0-3 GeV)

This is the gaussian fit of the first slice of the calibrated (teagg-ge)/ge vs ge plot. (shown on the previous slide)

This fit has been done manually by restricting the fit range of the gaussian from -0.05 to 0.20

*All other gaussians have been fit over the entire range.

σ_e_{agg} vs ge Explicit η cut: 1.3 to 3.3 Elliptical Cut 100 MeV Energy Cut

σe refers to the standard deviation of the Gaussian fitted to a slice of the calibrated (te_{agg}-ge)/ge vs ge plot.

(shown on slide 24)

Number of bins = 10 Bin Width = 3 GeV

Fit Parameters:

 $p_o = (0.0170581 +- 0.00502211)$ $p_1 = (0.00502211 +- 0.0385539) \text{ GeV}^{0.5}$ $p_2 = (0.0656204 +- 0.0714995) \text{ GeV}$

Explicit η cut: 1.3 to 3.3 Elliptical cut, 100 MeV Energy Cut

Mean of the Gaussians fitted to the slices of the calibrated (te_{agg}-ge)/ge vs ge plot.

Reduced_ χ 2 of the Gaussians fitted to the slices of the calibrated (te_{agg}-ge)/ge vs ge plot.

Fitted Gaussians

The x-axes denote $\Delta e_{agg}/ge$

