Simulation Statistics

By Sagar and Siddhant Under the guidance of Dr. Ankhi Roy

October 8, 2021

IIT Indore

Contents

Histograms for energy resolution of detectors by applying manual clustering, 100 MeV energy cut on aggregate towers, 200 MeV energy cut on EMCs individual towers, and incorporating slice-wise calibration, for the following detector-particle pairs:

- Pion: FHCAL + FEMC
- Pion: CEMC + HCALOUT
- Pion: CEMC + HCALIN + HCALOUT

tphi : tower ϕ , ttheta : tower θ , te_{agg}: tower energies aggregated in an event gphi : generated ϕ , gtheta : generated θ , ge: generated energy

Simulation Parameters

- Particles: pi⁻
- Events: 150,000 pi⁻(100,000 \rightarrow 0-30 GeV/c, 50,000 \rightarrow 0-2 GeV/c)
- momentum (p): 0 to 30 GeV/c
- Pseudorapidity (n): -4 to 4
- Azimuth (Φ): - π to π

Cuts:

- Detector-wise η cuts, intersection for combinations
- Detector-wise Elliptical cuts in dphi vs dtheta plots
- Energy cut on aggregated Towers (100 MeV)
- Energy cut on individual Towers of EMCs (200 MeV)

FEMC + FHCAL (pi⁻) Elliptical cut on dphi vs dtheta Explicit η cut: 1.3 to 3.3 100 MeV Aggregate Tower Energy Cut

200 MeV Individual Tower Cuts on FEMC Towers

After calibration

 $(te_{agg} \rightarrow \sum (weight*te/calibrationFactor)/mean(\sum (weight*te/calibrationFactor))$

Each slice of (teagg-ge)/ge vs ge plot will be calibrated on the basis of dividing by a calibration factor which equals to the Mean of teagg/ge corresponding to that particular slice in this plot.

(te_{agg}-ge)/ge vs ge Explicit η cut: 1.3 to 3.3 100 MeV Aggregate Tower Energy Cut 200 MeV Individual Tower Cuts on FEMC Towers

After calibration

 $(te_{agg} \rightarrow \sum(weight*te/calibrationFactor)/mean(\sum(weight*te/calibrationFactor))$ calibrationFactor(ge) = mean(te/ge) ; detector-wise; function of ge weight = mean(te/ge); detector-wise; independent of ge

 σ_{agg} vs ge Explicit η cut: 1.3 to 3.3 Elliptical Cut

100 MeV Aggregate Tower Energy Cut 200 MeV Individual Tower Cuts on FEMC Towers

 σ_{e} refers to the standard deviation of the Gaussian fitted to a slice of the calibrated (teagg-ge)/ge vs ge plot.

Number of bins = 15Bin Width = 2 GeV

Fit Parameters: $p_o = (0.0614881 +- 0.00383392)$ $p_1 = (0.627599 +- 0.0140564) \text{ GeV}^{0.5}$

Explicit η cut: 1.3 to 3.3 Elliptical Cut 100 MeV Aggregate Tower Energy Cut 200 MeV Individual Tower Cuts on FEMC Towers

FEMC + FHCAL (pi⁻) Fitted Gaussians

FEMC + FHCAL (pi⁻) Fitted Gaussians

The x-axes denote Δe_{agg} /ge

CEMC + HCALOUT (pi⁻)

Elliptical cut on dphi vs dtheta Explicit η cut: -1.1 to 1.1 100 MeV Aggregate Tower Energy Cut 200 MeV Individual Tower Cuts on CEMC Towers

CEMC + HCALOUT (pi⁻)

 $(te_{agg} \rightarrow \sum (weight*te/calibrationFactor)/mean(\sum (weight*te/calibrationFactor))$

Each slice of (teagg-ge)/ge vs ge plot will be calibrated on the basis of dividing by a calibration factor which equals to the Mean of teagg/ge corresponding to that particular slice in this plot.

(te_{agg}-ge)/ge vs ge Explicit η cut: -1.1 to 1.1 100 MeV Aggregate Tower Energy Cut 200 MeV Individual Tower Cuts on CEMC Towers

CEMC + HCALOUT (pi⁻)

After calibration

 $(te_{agg} \rightarrow \sum(weight*te/calibrationFactor)/mean(\sum(weight*te/calibrationFactor))$ calibrationFactor(ge) = mean(te/ge) ; detector-wise; function of ge weight = mean(te/ge); detector-wise; independent of ge

Elliptical Cut

 σ_e_{agg} vs ge Explicit η cut: -1.1 to 1.1 100 MeV Aggregate Tower Energy Cut 200 MeV Individual Tower Cuts on CEMC Towers

CEMC + HCALOUT (pi⁻)

Elliptical Cut

Explicit η cut: -1.1 to 1.1 100 MeV Aggregate Tower Energy Cut 200 MeV Individual Tower Cuts on CEMC Towers

Mean of the Gaussians fitted to the slices of the calibrated (te_{agg}-ge)/ge vs ge plot.

CEMC + HCALOUT (pi⁻)

Reduced_x2 of the Gaussians fitted to the slices of the calibrated (te_{aga}-ge)/ge vs ge plot.

CEMC + HCALOUT (pi⁻) **Fitted Gaussians**

Elliptical cut on dphi vs dtheta Explicit η cut: -1.1 to 1.1 100 MeV Aggregate Tower Energy Cut 200 MeV Individual Tower Cuts on CEMC Towers

 $(te_{agg} \rightarrow \sum (weight*te/calibrationFactor)/mean(\sum (weight*te/calibrationFactor)))$

Each slice of (teagg-ge)/ge vs ge plot will be calibrated on the basis of dividing by a calibration factor which equals to the Mean of teagg/ge corresponding to that particular slice in this plot.

(te_{agg}-ge)/ge vs ge Explicit η cut: -1.1 to 1.1 100 MeV Aggregate Tower Energy Cut 200 MeV Individual Tower Cuts on CEMC Towers

After calibration

 $(te_{agg} \rightarrow \sum(weight*te/calibrationFactor)/mean(\sum(weight*te/calibrationFactor))$ calibrationFactor(ge) = mean(te/ge) ; detector-wise; function of ge weight = mean(te/ge) ; detector-wise; independent of ge

Elliptical Cut

 σ_e_{agg} vs ge Explicit η cut: -1.1 to 1.1 100 MeV Aggregate Tower Energy Cut 200 MeV Individual Tower Cuts on CEMC Towers

Elliptical Cut

Explicit η cut: -1.1 to 1.1 100 MeV Aggregate Tower Energy Cut 200 MeV Individual Tower Cuts on CEMC Towers

(te_{agg}-ge)/ge vs ge plot.

(te_{agq}-ge)/ge vs ge plot.

CEMC + HCALIN + HCALOUT (pi⁻) Fitted Gaussians

