Simulation Statistics

By Sagar and Siddhant
Under the guidance of Dr. Ankhi Roy

October 8, 2021

IIT Indore

Contents

Histograms for energy resolution of detectors by applying manual clustering, 100 MeV energy cut on aggregate towers, 200 MeV energy cut on EMCs individual towers, and incorporating slice-wise calibration, for the following detector-particle pairs:

- Pion: FHCAL + FEMC
- Pion: CEMC + HCALOUT
- Pion: CEMC + HCALIN + HCALOUT

Simulation Parameters

- Particles: pi^{-}
- Events: 150,000 pi ${ }^{-}(100,000 \rightarrow 0-30 \mathrm{GeV} / \mathrm{c}, 50,000 \rightarrow 0-2 \mathrm{GeV} / \mathrm{c})$
- momentum (p): 0 to $30 \mathrm{GeV} / \mathrm{c}$
-Pseudorapidity (n): -4 to 4
- Azimuth (Ф): $-\boldsymbol{\pi}$ to $\boldsymbol{\pi}$

Cuts:

- Detector-wise η cuts, intersection for combinations
- Detector-wise Elliptical cuts in dphi vs dtheta plots
- Energy cut on aggregated Towers (100 MeV)
- Energy cut on individual Towers of EMCs (200 MeV)

FEMC + FHCAL (pi-)

FEMC + FHCAL (pi)

Elliptical cut on dphi vs dtheta
Explicit η cut: 1.3 to 3.3
100 MeV Aggregate Tower Energy Cut 200 MeV Individual Tower Cuts on FEMC Towers

FEMC + FHCAL (pi-)

($\mathrm{te} \mathrm{agg}_{\text {ag }}-\mathrm{ge}$)/ge vs ge
Explicit η cut: 1.3 to 3.3
100 MeV Aggregate Tower Energy Cut
200 MeV Individual Tower Cuts on FEMC Towers

After calibration

 calibrationFactor(ge) = mean(te/ge) ; detector-wise; function of ge
weight $=$ mean(te/ge) ; detector-wise; independent of ge

FEMC + FHCAL (pi-)

$\sigma_{-} e_{\text {agg }}$ vs ge
Explicit η cut: 1.3 to 3.3
Elliptical Cut
100 MeV Aggregate Tower Energy Cut 200 MeV Individual Tower Cuts on FEMC Towers

σe refers to the standard deviation of the Gaussian fitted to a slice of the calibrated (teagg-ge)/ge vs ge plot.

Number of bins $=15$
Bin Width $=2 \mathrm{GeV}$
Fit Parameters:
$p_{0}=(0.0614881+-0.00383392)$
$\mathrm{p}_{1}=(0.627599+-0.0140564) \mathrm{GeV}^{0.5}$

FEMC + FHCAL (pi-)

Explicit η cut: 1.3 to 3.3
Elliptical Cut
100 MeV Aggregate Tower Energy Cut
200 MeV Individual Tower Cuts on FEMC Towers

Mean of the Gaussians fitted to the slices of the calibrated (te agg -ge)/ge vs ge plot.

Reduced_x2 of the Gaussians fitted to the slices of the calibrated (te ${ }_{\text {agg }}-$ ge)/ge vs ge plot.

FEMC + FHCAL (pi)

$$
\begin{aligned}
& \infty \\
& \stackrel{0}{5} \\
& 0
\end{aligned}
$$

!

$-0.8-0.6$

The x-axes denote $\Delta \mathrm{e}_{\text {agg }} / \mathrm{ge}$

FEMC + FHCAL (pi)

Fitted Gaussians

CEMC + HCALOUT (pi)

CEMC + HCALOUT (pi')
 Elliptical cut on dphi vs dtheta

 Explicit η cut: -1.1 to 1.1100 MeV Aggregate Tower Energy Cut 200 MeV Individual Tower Cuts on CEMC Towers

After calibration

Each slice of (teagg-ge)/ge vs ge plot will be calibrated on the basis of dividing by a calibration factor which equals to the Mean of teagg/ge corresponding to that particular slice in this plot.

CEMC + HCALOUT (pi')

(te $\left.{ }_{\text {agg }}-\mathrm{ge}\right) / \mathrm{ge}$ vs ge
Explicit η cut: - 1.1 to 1.1
100 MeV Aggregate Tower Energy Cut
200 MeV Individual Tower Cuts on CEMC Towers

After calibration

 calibrationFactor(ge) = mean(te/ge) ; detector-wise; function of ge
weight $=$ mean(te/ge) ; detector-wise; independent of ge

CEMC + HCALOUT (pi)
 $\sigma_{-} e_{\text {agg }}$ vs ge
 Explicit η cut: -1.1 to 1.1

Elliptical Cut
100 MeV Aggregate Tower Energy Cut
200 MeV Individual Tower Cuts on CEMC Towers

σe refers to the standard deviation of the Gaussian
fitted to a slice of the calibrated (teagg-ge)/ge vs ge plot.

Number of bins $=10$
Bin Width $=3 \mathrm{GeV}$
Fit Parameters:
$p_{o}=(0.228930+-0.00454651)$
$p_{1}=(0.303023+-0.0143942) \mathrm{GeV}^{0.5}$

CEMC + HCALOUT (pi')

Explicit η cut: - 1.1 to 1.1
Elliptical Cut
100 MeV Aggregate Tower Energy Cut
200 MeV Individual Tower Cuts on CEMC Towers

Mean of the Gaussians fitted to
the slices of the calibrated (te ${ }_{\text {agg }}-$ ge)/ge vs ge plot.

Reduced_x2 of the Gaussians fitted to the slices of the calibrated (te ${ }_{\text {agg }}-\mathrm{ge}$)/ge vs ge plot.

CEMC＋HCALOUT（pi）

Fitted Gaussians

The x－axes denote $\Delta \mathrm{e}_{\text {agg }} / \mathrm{ge}$

CEMC + HCALIN + HCALOUT (pi')

CEMC + HCALIN + HCALOUT (pi)

Elliptical cut on dphi vs dtheta
Explicit η cut: -1.1 to 1.1
100 MeV Aggregate Tower Energy Cut
200 MeV Individual Tower Cuts on CEMC Towers

After calibration

$\left(\right.$ te $_{\text {agg }} \rightarrow \sum\left(\right.$ weight** * /calibrationFactor)/mean($\sum\left(\right.$ weight* * te/calibrationFactor))

Each slice of (teagg-ge)/ge vs ge plot will be calibrated on the basis of dividing by a calibration factor which equals to the Mean of teagg/ge corresponding to that particular slice in this plot.

CEMC + HCALIN + HCALOUT (pie)

($\mathrm{te}_{\text {agg }}-\mathrm{ge}$)/ge vs ge
Explicit η cut: - 1.1 to 1.1
100 MeV Aggregate Tower Energy Cut 200 MeV Individual Tower Cuts on CEMC Towers

After calibration

 calibrationFactor(ge) = mean(te/ge) ; detector-wise; function of ge weight $=$ mean(te/ge) ; detector-wise; independent of ge

CEMC + HCALIN + HCALOUT (pi')
 $\sigma_{-} e_{\text {agg }}$ vs ge
 Explicit η cut: - 1.1 to 1.1

Elliptical Cut
100 MeV Aggregate Tower Energy Cut
200 MeV Individual Tower Cuts on CEMC Towers

σe refers to the standard deviation of the Gaussian fitted to a slice of the calibrated (teagg-ge)/ge vs ge plot.

Number of bins $=10$
Bin Width $=3 \mathrm{GeV}$
Fit Parameters:
$p_{0}=(0.182869+-0.00442540)$
$p_{1}^{\circ}=(0.363749+-0.0147909) \mathrm{GeV}^{0.5}$

CEMC + HCALIN + HCALOUT (pi)

Explicit η cut: - 1.1 to 1.1
Elliptical Cut
100 MeV Aggregate Tower Energy Cut
200 MeV Individual Tower Cuts on CEMC Towers

Mean of the Gaussians fitted to the slices of the calibrated
(te $\left.{ }_{\text {agg }}-\mathrm{ge}\right) / \mathrm{ge}$ vs ge plot.

Reduced_X2 of the Gaussians
fitted to the slices of the calibrated
(te agg -ge)/ge vs ge plot.

CEMC + HCALIN + HCALOUT (pi-)

Fitted Gaussians

The x -axes denote $\Delta \mathrm{e}_{\mathrm{agg}} / \mathrm{ge}$

$$
B
$$

