Simulation Statistics

By Sagar and Siddhant
Under the guidance of Dr. Ankhi Roy, Dr. Chris Pinkenburg, and Dr. Kolja Kauder

October 22, 2021

IIT Indore

Contents

Histograms for energy resolution of detectors with manual clustering, 360 MeV energy cut on aggregate towers of EMCs (FEMC and CEMC), and slice-wise calibration, for the following detector-particle pairs:

- Pion: FHCAL + FEMC
- Pion: CEMC + HCALIN + HCALOUT

Simulation Parameters

- Particles: pi^{-}
- Events: 150,000 pi ${ }^{-}(100,000 \rightarrow 0-30 \mathrm{GeV} / \mathrm{c}, 50,000 \rightarrow 0-2 \mathrm{GeV} / \mathrm{c})$
- momentum (p): 0 to $30 \mathrm{GeV} / \mathrm{c}$
- Pseudorapidity (n): -4 to 4
- Azimuth (Ф): $-\boldsymbol{\pi}$ to $\boldsymbol{\pi}$

Cuts:

- Detector-wise η cuts, intersection for combinations
- Detector-wise Elliptical cuts in dphi vs dtheta plots
- Energy cut on individual Towers of EMCs (360 MeV)

FEMC + FHCAL (pi-)

FEMC (pi-)

te vs counts
Explicit η cut: 1.3 to 3.3
No energy cut

Energy deposition in FEMC to deduce MIPS threshold

FEMC + FHCAL (pi$)$

Elliptical cut on dphi vs dtheta
Explicit η cut: 1.3 to 3.3
360 MeV Aggregate Energy Cuts on EMC Towers

After calibration

$\left(\right.$ te $_{\text {agg }} \rightarrow \sum\left(\right.$ weight** * /calibrationFactor)/mean($\sum\left(\right.$ weight* * te/calibrationFactor))

Each slice of (teagg-ge)/ge vs ge plot will be calibrated on the basis of dividing by a calibration factor which equals to the Mean of teagg/ge corresponding to that particular slice in this plot.

FEMC + FHCAL (pi-)

(te ${ }_{\text {agg }}-\mathrm{ge}$)/ge vs ge
Explicit η cut: 1.3 to 3.3
360 MeV Aggregate Energy Cuts on EMC Towers

After calibration

 calibrationFactor(ge) = mean(te/ge) ; detector-wise; function of ge

FEMC + FHCAL (pi-)

$\sigma_{-} \mathrm{e}_{\text {agg }}$ vs ge

Explicit η cut: 1.3 to 3.3
Elliptical Cut for Manual Clustering
360 MeV Aggregate Energy Cuts on EMC Towers

σe refers to the standard deviation of the Gaussian
fitted to a slice of the calibrated (teagg-ge)/ge vs ge plot.

Number of bins $=10$
Bin Width $=3 \mathrm{GeV}$
Fit Parameters:
$p_{o}=(0.123222+-0.00462695)$
$\mathrm{p}_{1}=(0.222539+-0.0155956) \mathrm{GeV}^{0.5}$

FEMC + FHCAL (pi-)

Explicit η cut: 1.3 to 3.3
Elliptical Cut for Manual Clustering 360 MeV Aggregate Energy Cuts on EMC Towers

Cuts on aggregate EMC Towers

FEMC + FHCAL (pi-)

Explicit η cut: 1.3 to 3.3
Elliptical Cut for Manual Clustering 360 MeV Aggregate Energy Cuts on EMC Towers

Mean of the Gaussians fitted to the slices of the calibrated (te ${ }_{\text {agg }}-$ ge)/ge vs ge plot.

Reduced_x2 of the Gaussians fitted to the slices of the calibrated (te ${ }_{\text {agg }}-$ ge)/ge vs ge plot.

FEMC + FHCAL (pi)

Fitted Gaussians

The x-axes denote $\Delta \mathrm{e}_{\mathrm{agg}} / \mathrm{ge}$

CEMC + HCALIN + HCALOUT (pi')

CEMC (pi-)
 te vs counts

Explicit η cut: -1.1 to 1.1
No energy cut

Energy deposition in CEMC to deduce MIPS threshold

CEMC + HCALIN + HCALOUT (pi)
 Elliptical cut on dphi vs dtheta

Explicit η cut: -1.1 to 1.1
360 MeV Aggregate Energy Cut on EMC Towers

After calibration

$\left(\right.$ te $_{\text {agg }} \rightarrow \sum\left(\right.$ weight** * /calibrationFactor)/mean($\sum\left(\right.$ weight* * te/calibrationFactor))

Each slice of (teagg-ge)/ge vs ge plot will be calibrated on the basis of dividing by a calibration factor which equals to the Mean of teagg/ge corresponding to that particular slice in this plot.

CEMC + HCALIN + HCALOUT (pi')

(te ${ }_{\text {agg }}$-ge)/ge vs ge
Explicit η cut: -1.1 to 1.1
360 MeV Aggregate Energy Cut on EMC Towers

After calibration

calibrationFactor(ge) = mean(te/ge) ; detector-wise; function of ge
weight $=$ mean(te/ge) ; detector-wise; independent of ge

CEMC + HCALIN + HCALOUT (pi')
 $\sigma_{-} e_{\text {agg }}$ vs ge

Explicit η cut: - 1.1 to 1.1
Elliptical Cut for Manual Clustering
360 MeV Aggregate Energy Cuts on EMC Towers

σe refers to the standard deviation of the Gaussian fitted to a slice of the calibrated (teagg-ge)/ge vs ge plot.

Number of bins $=10$
Bin Width $=3 \mathrm{GeV}$
Fit Parameters:
$p_{o}=(0.218467+-0.00527894)$
$p_{1}=(0.150429+-0.0165214) \mathrm{GeV}^{0.5}$

CEMC + HCALIN + HCALOUT (pi)

Explicit η cut: -1.1 to 1.1
Elliptical Cut for Manual Clustering
360 MeV Aggregate Energy Cuts on EMC Towers

Cuts on individual EMC Towers

Cuts on aggregate EMC Towers

CEMC + HCALIN + HCALOUT (pi)

Explicit η cut: - 1.1 to 1.1
Elliptical Cut for Manual Clustering
360 MeV Aggregate Energy Cuts on EMC Towers

Mean of the Gaussians fitted to the slices of the calibrated
(te ${ }_{\text {agg }}-$ ge)/ge vs ge plot.

Reduced_X2 of the Gaussians
fitted to the slices of the calibrated
(te agg -ge)/ge vs ge plot.

CEMC + HCALIN + HCALOUT (pi-)

Fitted Gaussians

$$
B
$$

