Simulation Statistics

By Sagar and Siddhant
Under the guidance of Dr. Ankhi Roy, Dr. Chris Pinkenburg, and Dr. Kolja Kauder

January 14, 2022

IIT Indore

Contents

Plots for energy resolution of detectors with manual clustering, theta-parametrized energy cuts on individual towers of EMCs (FEMC and CEMC) to account for pion-MIPs, low-energy cut on events to remove noise, and slice-wise calibration, for the following detector-particle pairs:

- Pion: FHCAL + FEMC
- Pion: CEMC + HCALIN + HCALOUT

Simulation Parameters

- Particles: pi^{-}
- Events: 150,000 pi ${ }^{-}(100,000 \rightarrow 0-30 \mathrm{GeV} / \mathrm{c}, 50,000 \rightarrow 0-2 \mathrm{GeV} / \mathrm{c})$
- momentum (p): 0 to $30 \mathrm{GeV} / \mathrm{c}$
- Pseudorapidity (n): -4 to 4
- Azimuth (Ф): $-\boldsymbol{\pi}$ to $\boldsymbol{\pi}$

Cuts:

- Detector-wise η cuts, intersection for combinations
- Detector-wise Eliptical cuts using dphi vs dtheta plots
- Theta-parametrized energy cut on individual towers of EMCs
- Aggregated energy cut of 100 MeV on all events

FEMC + FHCAL (pi')

FEMC (mu $)$

Theta-parametrization of muon-MIP energy
Explicit n cut: 1.4 to 3.0

FEMC + FHCAL (pi)
 Eliptical cut on dphi vs dtheta

Explicit η cut: 1.4 to 3.0
gtheta-parametrized Energy Cut on Individual EMC Towers
100 MeV Aggregate Energy Cut

After calibration

$\left(\right.$ te $_{\text {agg }} \rightarrow \sum\left(\right.$ weight** * /calibrationFactor)/mean($\sum\left(\right.$ weight* * te/calibrationFactor))

Each slice of (teagg-ge)/ge vs ge plot will be calibrated on the basis of dividing by a calibration factor which equals to the Mean of teagg/ge corresponding to that particular slice in this plot.

FEMC + FHCAL (pi-)

(te ${ }_{\text {agg }}-\mathrm{ge}$)/ge vs ge
Explicit η cut: 1.4 to 3.0
gtheta-parametrized Energy Cut on individual EMC Towers
Aggregated Energy Cut of 100 MeV

After calibration

 calibrationFactor(ge) = mean(te/ge) ; detector-wise; function of ge
weight $=$ mean(te/ge) ; detector-wise; independent of ge

FEMC + FHCAL (pi-)

$\sigma_{-} e_{\text {agg }}$ vs ge

Explicit η cut: 1.4 to 3.0
Eliptical Cut for Manual Clustering
gtheta-parametrized Energy Cut on Individual EMC Towers
100 MeV Aggregate Energy Cut

σe refers to the standard deviation of the Gaussian fitted to a slice of the calibrated (teagg-ge)/ge vs ge plot.

```
Number of bins = 11
Bin Width = 1.5 GeV ge }\in[0,3
    3.0 GeV ge \in [3,30]
```

Fit Parameters:
$p_{o}=(-0.0577162+-0.00450897)$
$\mathrm{p}_{1}=(0.867248+-0.0186747) \mathrm{GeV}^{0.5}$

FEMC + FHCAL (pi-)

Explicit η cut: 1.4 to 3.0
Eliptical Cut for Manual Clustering
gtheta-parametrized Energy Cut on Individual EMC Towers
100 MeV Aggregate Energy Cut

Mean of the Gaussians fitted to the slices of the calibrated (te agg -ge)/ge vs ge plot.

Reduced_x2 of the Gaussians fitted to the slices of the calibrated (te ${ }_{\text {agg }}-$ ge)/ge vs ge plot.

FEMC + FHCAL (pi-)

Explicit η cut: 1.4 to 3.0
Eliptical Cut for Manual Clustering
gtheta-parametrized Energy Cut on Individual EMC Towers

No aggregate energy cut on events

100 MeV aggregate energy cut on events

FEMC + FHCAL (pi-)

Slices of $\left(\mathrm{te}_{\mathrm{ag}}\right.$-ge)/ge vs ge
Explicit η cut: 1.4 to 3.0
Eliptical Cut for Manual Clustering
gtheta-parametrized Energy Cut on Individual EMC Towers

FEMC + FHCAL (pi-)

Slices of ($\mathrm{te} \mathrm{e}_{\mathrm{agg}}$-ge)/ge vs ge
Explicit η cut: 1.4 to 3.0
Eliptical Cut for Manual Clustering
gtheta-parametrized Energy Cut on Individual EMC Towers

FEMC + FHCAL (pi$)$

$$
\begin{aligned}
& \stackrel{n}{0} \\
& \overleftarrow{\Xi} \\
& 0
\end{aligned}
$$

CEMC + HCALIN + HCALOUT (pi-)

CEMC (mu)

Theta-parametrization of muon-MIP energy
Explicit η cut: -0.96 to 0.92
器

NO. NAME VALUE ERROR STEP SIZE DERIVATIVE
$\begin{array}{llllll}1 \text { p0 } & 9.46093 e-01 & 2.68719 e-03 & -1.23162 e-03 & 4.05204 e-08\end{array}$
2 p1 -1.62771e+00 3.43564e-03 3.70185e-03 -5.93767e-07
$3 \mathrm{p} 21.37776 e+00$ 1.81743e-03 -3.83630e-03 1.14713e-05
4 p3 $\quad-5.49960 e-01 \quad 8.68094 e-04 \quad 1.64797 e-03 \quad 2.56433 e-05$
$\begin{array}{llllll}5 & \text { p4 } & 8.82673 e-02 & 2.50538 e-04 & 2.50538 e-04 & 3.20234 e-04\end{array}$
reduced_chi2 of theta fit: 1.03869

CEMC + HCALIN + HCALOUT (pi)

Eliptical cut on dphi vs dtheta
Explicit η cut: -0.96 to 0.92
gtheta-parametrized Energy Cut on Individual EMC Towers
100 MeV Aggregate Energy Cut

After calibration

$\left(\right.$ te $_{\text {agg }} \rightarrow \sum\left(\right.$ weight** * e/calibrationFactor)/mean($\sum\left(\right.$ weight* * te/calibrationFactor))

Each slice of (teagg-ge)/ge vs ge plot will be calibrated on the basis of dividing by a calibration factor which equals to the Mean of teagg/ge corresponding to that particular slice in this plot.

CEMC + HCALIN + HCALOUT (pi-)

(te ${ }_{\text {gga }}-\mathrm{ge}$)/ge vs ge
Explicit η cut: -0.96 to 0.92
Eliptical Cut for Manual Clustering
gtheta-parametrized Energy Cut on Individual EMC Towers
100 MeV Aggregate Energy Cut

After calibration

$$
\begin{aligned}
& \left(\mathrm { te } _ { \mathrm { agg } } \rightarrow \Sigma \left(\text { weight } ^ { * } \text { te/calibrationFactor)/mean(} \Sigma \left(\text { weight }^{*}\right.\right.\right. \text { te/calibrationFactor)) } \\
& \text { calibrationFactor(ge) }=\text { mean(te/ge) } ; \text { detector-wise; function of ge } \\
& \text { weight = mean(te/ge) ; detector-wise; independent of ge }
\end{aligned}
$$

CEMC + HCALIN + HCALOUT (pi)

$\sigma_{-} e_{\text {agg }}$ vs ge
Explicit η cut: - 0.96 to 0.92
Eliptical Cut for Manual Clustering
gtheta-parametrized Energy Cut on Individual EMC Towers
100 MeV Aggregate Energy Cut

σe refers to the standard deviation of the Gaussian fitted to a slice of the calibrated (teagg-ge)/ge vs ge plot.

Number of bins $=11$

Bin Width $=$	1.5 GeV		ge $\in[0,3)$
	3.0 GeV		ge $\in[3,30]$

Fit Parameters:
$p_{o}=(0.160642+-0.00576829)$
$p_{1}=(0.419933+-0.0204177) \mathrm{GeV}^{0.5}$

CEMC + HCALIN + HCALOUT (pi')

Explicit η cut: -0.96 to 0.92
Eliptical Cut for Manual Clustering
gtheta-parametrized Energy Cut on Individual EMC Towers
100 MeV Aggregate Energy Cut

Mean of the Gaussians fitted to the slices of the calibrated
(te $\left.{ }_{\text {agg }}-\mathrm{ge}\right) / \mathrm{ge}$ vs ge plot.

Reduced_X2 of the Gaussians
fitted to the slices of the calibrated
(te ${ }_{\text {agg }}$-ge)/ge vs ge plot.

CEMC + HCALIN + HCALOUT (pi')

Explicit η cut: -0.96 to 0.92
Eliptical Cut for Manual Clustering
gtheta-parametrized Energy Cut on Individual EMC Towers

No aggregate energy cut on events

100 MeV aggregate energy cut on events

CEMC + HCALIN + HCALOUT (pi')

Slices of (te $\mathrm{agg}^{-\mathrm{ge}) / \mathrm{ge} \text { vs ge }}$
Explicit η cut: -0.96 to 0.92
Eliptical Cut for Manual Clustering
gtheta-parametrized Energy Cut on Individual EMC Towers

CEMC + HCALIN + HCALOUT (pi')

Slices of (te ${ }_{\text {agg }}$-ge)/ge vs ge
Explicit η cut: - 0.96 to 0.92
Eliptical Cut for Manual Clustering
gtheta-parametrized Energy Cut on Individual EMC Towers

CEMC + HCALIN + HCALOUT (pi-)

Fitted Gaussians

The x-axes denote $\Delta \mathrm{e}_{\mathrm{agg}} / \mathrm{ge}$

$$
B
$$

