TPC calibration: theoretical considerations and data
driven approach

Boundary error - semistatic and static
distortion

Why is the RUN2 calibration not sufficient in RUN3? And what we can do about it?
Proposal:

ATO-490: Data driven current = distortion correction 1D = 3D, 3x1D — 3D using ITS,
TRD, TOF interpolation



Distortion correction:
* Run 1/Run 2/Run3 distortion calibration

* Mean space charge distortion correction
* Space charge distortion fluctuation and interplay with static and semistatic
distortion

Numerical/Analytical model + neural network (CNN) validation
* |s it possible to obtain data driven distortion fluctuation calibration ?
* Can we use such procedure for analytical model validation ?
* What is the precision of data driven method ?
*  Why is the RUN2 calibration schema not sufficient in RUN3?

Space charge and distortion fluctuation model
Distortion fluctuation - data driven calibration
Boundary error and Machine learning consideration




Proposal Distortion fluctuation data driven calibration - Fluctuation of current
as a white noise

* Datadriven calibration using discrete (generalized) Fourier transform
* obtaining numerical derivative of distortion maps

* A= 2P,

* A(rre,z) = f(c, D))

* Alrre,z) = 2 A (rre,z) = 2 f.(c®))

Boundary effect consideration:
* Distortion do not commute....
* Calibrated distortion maps obtained as averaged map for given mean current
* Distortion fluctuation typical higher than distortion due boundary
effect e.g. O(1 cm) for CE charging up
* Could we obtain “real” map by de-convolution e.g. using A, Kernel

* 3D calibration models - not enough granularity, resp. statistics for “boundary
effects”



Run 1/Run 2/ Run 3 : Boundary error calibration.

Static and semistatic (charge up, and wt- v, )
distortion

more details in

Run 1 distortion calibration:

https://indico.cern.ch/event/128634/contributions/112892/attachments/86275/123631/TPCSpac
ePointcorection.pdf



https://indico.cern.ch/event/128634/contributions/112892/attachments/86275/123631/TPCSpacePointcorection.pdf
https://indico.cern.ch/event/128634/contributions/112892/attachments/86275/123631/TPCSpacePointcorection.pdf
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Composed distortion - linear combination of partial distortion
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Assumptions:

Space point distortion transformation commute (the order of applying of
corrections is not important)

Space point distortion can be approximated as a linear combination of
the “partial distortion” functions with given parameter:

* A=X kiEi

Space point distortion not directly observed. We define the set of
observables O.

* AO=2Z kiOei

Under given assumption the analytical (non iterative) global

minimization of distortion maps can be performed solving the set of
linear equations.

Assumptions were tested for the typical distortion in the TPC, moreover
the assumption were tested also for the fitted parameters.

FitPlaneConstrain )

Distributed computir

Calibration train
(Grid) filling off

residual

Merg1 g

12

—

Creation of distortion

maps

Distortion models Fitting

* Possibility to add constrains

* Extraction of the partial fits

Distortion calibration (Linear fits using libStat)

* Input data observables and fit models from the tree

* Possibility to check differntialy the the fit values (return value of the

Run 1 calibration based mostly on the track matching (vertex, external tracks)
In Run 2, Run 3 -calibration simpler - using point - track interpolation residuals
For some type of calibration and calibration QA track/vertex matching will be
used
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CE analysis — charge up analysis results

Local y residuals vs. local x
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For sicsussion - RUN2 - Distortion fit model

Validation of numerical calculation using
real data

example test case - line charge

simulation and validation of the boundary effect critical




Electric Field of Line Charge

E
E MT T Cylindrical Gaussian surface

The electric field of an infinite line charge with a uniform AA é '\\T/,'X
linear charge density can be obtained by a using Gauss' law. T ) ‘;Z(i)\\‘—:

A = charge per unit length

A Qi
QWEAR E(’I“, T¢) N ARZ

E(AR)| =

Fit model
Set of individual small hotshots, producing line charge.
e occupancy analysis (ref.)

* O&(AR)/0OR analysis
Infinite line approximation used in following slides, to obtain initial parameters for full E field calculation

N, A\
Firro) = ; V(r =12+ (rg —ré;)?



Fit model

Infinite line approximation used in following slides, to obtain initial parameters for full E field calculation.
2- dimensional fit in z bins:
« Finite size (radius) of the ion line - introducing additional scaling parameter AO,

» wt used as a free fit parameter.
Automatic localization of the peaks - work in progress.
e Only one peak fits shown in next slides

N
N (r — 7))\ Ay~ F..,+wrkE
BT = 2 G o o7 A o '
"N, A, ~F,.+ (,UTEf,aqb
E (7“ T¢) _ (Tgb — Tgbi))\i
T T L (=12 4 (rd — )2 + AO?
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Why is the RUN2 calibration not sufficient in RUN3?
Why do we have to understand origin of distortion?




RUN2 distortion calibration was developed as a clone of original RUN3
Proof of concept calibration (TPC/TDR, 2013, Ml, Jens, Enst)

* In our original RUN3 proposal we were considering to follow fluctuation
time intervals

In RUN2, RUN3 schema could not be applied

* no continuous readout - not possible to follow fluctuations

* no current measurement

* moreover, some aspects were less critical (see next slides)
* e.g. mean distortion in RUN2 was significantly smaller
* in critical regions resolution significantly worse

We learned a lot in RUN2, but we should be aware of shortcomings




Distortion commute

* Combined distortions due set of boundary error defects are liner combination of partial
distrtions

* More less fine space charge (SC) distortion region far away from boundaries error (BE)
region

*  A(SC+BE)!=A(SC)+ ZA(BE), but
*  A,(SC+BE)!=A (SC)+ A, (BE)

Distortion maps are linearly scaling with rate
* notvalid evenin RUN2

It is enough to correct mean distortion and assign big error to fluctuating
regions
* enough in case small spots distortion as in the RUN2
* far not enough for RUN3 distortion - full TPC fluctuates

Distortion maps obtained in long calibration time intervals are not maps
corresponding to mean currents but averaged distortion maps integrated
over fluctuations

* boundary errors are smear out in average - but not in reality
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Overall performance better using TRD in refit



Reminder: Space charge density and distortion
fluctuation origin and analytical models
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Space charge distortion distortion global and local fluctuation ~ 2-5 % (0.6-1.0
cm)

* Mean distortion to be calibrated using cluster - ITS-TRD+TOF residual
maps O(s)-O(min)

* Calibration algorithm can (not?) follow fluctuation insufficient statistic
Fluctuation to be calibrated with time granularity ~ 5 ms
* Precise digital current to be used

* Epsilon maps to be regularly updated

* Convolutional Neural Network (U-Net implementation) used in test

* TPC tracklet - track (combined and TPC only) residuals as an QA of the
method and as a alternative calibration
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* Mean distortion to be calibrated using cluster - ITS-TRD+TOF residual
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Algorithm can (not?) follow fluctuation insufficient statistic

New data driven (ITS-> TPC <-- TRD+TOF) method proposed
* new idea working on data augment for U-net



_ ntracks What is fluctuating?
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Run2. Space charge Fluctuation. PbPb

o |21 4l Run2 scenario

0 Fpar =000 Omu=800 Small ion hotspot

: 1t =15 (MIP) 64=3 (MIP) lon integration time ~ 0.1 s

1 volume Fraction . 3em® S~3x3cm
0 B:— 244cm?-83cm? Rin"83 cm
0.63— Rout~245cm

- Volume fraction

04F F = 0.00017
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preup at volume

Significant relative fluctuation of the space charge

Limit cases:
* bigvolume limit 1/(Fu,.4)<<2 = o/u~sqrt(1/Ngens)
* small volume limit 1/(Fu,.,)>>2 = o/u~1/F*sqrt(1/N,..)

Run 2 O(20-30%) for pp and Pb (small volume limit) - consistent with measurement
Run3 Pb-Pb O(2-5%)




Run2. Space charge Fluctuation. PbPb Run2. Space charge Fluctuation pp
o127 4 ok™ [
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Significant relative fluctuation of the space charge

Limit cases:
e bigvolume limit 1/(Fu,.4)<<2 = o/u~sqrt(1/Ng e
* small volume limit 1/(Fu.)>>2 = o/u~sqrt(1/N.q )

Run 2 O(20-30%) for pp and Pb (small volume limit) - consistent with measurement
Run3 Pb-Pb O(2-5%)



Current fluctuation as a white noise




~ Current fluctuation — Density fluctuation — Distortion fluctuation
i(r,ro,t) = (i(r,ro,t)) + Ai(r, ro, t)

i(ryre,t) = (i(r,r9,1)) + Ai(r, 79, 1) (1)
t04+A,

p(r,ro, z) = /tO e(r,ro,t)iroc(r,r¢,t) + ipripr(r, 70, 2, t)dt  (2)

A(r,rg, 2) = folp(r,r¢, 2) (3)

A(r, 7“(/5, ) = fili(r,r,t)) (4)

1) lon deposits around mean value (white noise in time )

2) Density can be obtained integrating currents along ion drift lines

3) Distortion A as function of density p (not measured experimentally)
4) Goal: Distortion A as function of current i o(r,r,t)

1) izoc measured experimentally, iyoc ~ € ipprr = Troc > iorier
2) lon feedback «(r,re,t) is not well known. To be calibrated



- Current fluctuation approximated as (Gausian) white noise
i(r,ro,t) = (i(r,ro,t)) + Ai(r, ro, t) (1)
i(r,ro,t) = (i(r,ro,t)) + Z Cn@n(r, 10, t) (2)

Al is a (~Gausian) white noise vector

A random vector is said to be a white noise vector or white random vector if its components
each have a probability distribution with zero mean and finite variance, and are
Statistically independent

» the covariance matrix R of the components of a white noise vector w with n elements must be an n
by n diagonal matrix

 jfin addition every variable in w also has a normal distribution with the same variance o2 w
is said to be a Gaussian white noise vector

» under most types of discrete Fourier transform, such as FFT and Hartley, the transform W of
w will be a Gaussian white noise vector

» Under that definition, a Gaussian white noise vector will have a perfectly flat power

spectrum, with Pi= o2 for all i.
https://en.wikipedia.org/wiki/White_noise


https://en.wikipedia.org/wiki/White_noise
https://en.wikipedia.org/wiki/Random_vector
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Statistically_independent

Example timings:

Tcalibration - 0(1 mln)
Tion drift - 0(028)
Tsampling ~0(0.01s)
_)

Within example
calibration time interval:
* O(300) full ion drift
* O(6000) calibration A
windows

Fourier coefficient c, extracted for each A window

* PDFp=0,0
* Fourier coefficient c, independent

Selecting A windows based on c, percentile - Upper/Middle/Lower (e.g. 20 % percentile )
* averaging over A windows - mean currents for given frequency can be selected
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Figure 8 8: (Lefit) Mustration of the measured ri distortions being composed of the real rip distorions and the radial distortions,
shown for three example tracks crossing a pad row (grev area) under different local track inclination angles ce.
(Right) Measured correlation between drp’ and tan| o) (see text).

Standard distortion calibration extracted for specially triggered A time windows
* percentile of overall statistics used - should be precise enough
* ¢, statistic reused

An(r’r(p’z) = fn(Cn¢j)
An(r9r"p’z) = fn(qu)j)




i(r,re, t) = (i(r, ¢ )> + Ai(r,r¢, 1) (1)
i(r,ro,t) = (i( )+ Z Cn@n(r, 10, t) (2)

Digital Currents generalized Fourier decomposition

A(r,r¢, z) = fi(i(r,re,t)) (1)
A(r,re, 2) = fein((i(r,r, 1)) + K ((r,r,1)) (2)
A(r,ré,2) = fen ((i(r,16,1))) + Z o (@ (7,76, 1)) (3)

Distortion decomposition - to be proven
Special treatment of the boundary condition




Test to be done using Toy MC event input or O2 events

1) Test: ¢, orthogonality assumptions for digital current

2) Test: Non triggered frequencies should vanish in average current

3) How many fourier transform needed - In previous studies (5-10 ms ?)
4) Test “linearity”assumptions for composed distortion

5) Could be A, =f (®,) approximated by “trivial function” and A,

1) do we need N maps or is one A, sufficient

Calibrated distortion maps are obtained as averaged map for given mean

current
* Distortion fluctuation typical higher than distortion due boudary effect

* e.g. O(1 cm) for CE charging up
* Could we obtained “real” map by deconvolution e.g. using A, Kernel




Histogram based similar to original implementation
* Using RUN2 type of calibration - procedure to be repeated several times

Algorithm:

1) Residual extraction (similar as in RUN2)
1) maybe try to use also TOF only (tagged by time match)
2) Radial distortion at low R will profit from special trigger - flat z vertex

2) residual histogramming per T, ,in (0.005-0.01 s)

1) done once
3) histogram merging per Fourier coefficient group (n times)

4) distortion map (and mean current) extraction per Fourier coefficient (n
times)

N dimensional pipeline (new version):
* PyTorch (CPU,GPU) based histogramming in progress
* TensorFlow/PyTorch (CPU, GPU) fitting in progress

In case f, can be approximated by f, f®, - (to be checked) - procedure can
faster as current implementation



Boundary error calibration.
Static and semistatic distortion
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Run 1 data corrected using set of analytical model (No outer detectors available in
that time)
Composed distortion - linear combination of partial distortion



Distortion sources:

SC - Space charge

Boundary effects:

CE charging

Resistor road granularity
Cover voltage misalignment
ROC misalignment
Resistor road misalignemnt

Commutative (distortion composition) in distortion calibration. Why is it
important?

* integrated distortions does not commute

* A(SC+BE)!=A(SC)+ ZA(BE)

* but local distortions commute
* A (SC+BE)=A, (SC)+zZA,(BE)

In mean distortion map, sharp boundary error distortion are “washed out”



PPPPP Centrality Classes:
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025 Figure 27: The value of the strongly intensive quantity sigma X obtained for Pb+Pb collisions at \/sny =
-03 . . . . - -
05 o2 2.76 TeV in the ALICE experiment (circles) for 10% width of centrality class, plotted as a function of

T = ED 0 i 2 £ An. In the figure, the results for various centrality classes of Pb+Pb collisions, from central to peripheral
z{em) reactions. are marked hv different colors. The first two nanels show values for exnerimental data for two

Residual mis-calibration due boundary error is affecting kinematical and QA
variables an matching efficiency (see e.g. mean ITS chi2 and TPC DCAz bias)

* at RUN3 charging up (not proportional to IR) will be bigger

Depending on the track selection effect can be quite significant. Mostly in
differential studies (see e.g correlation studies
https://alice-notes.web.cern.ch/node/676)

* for central events ~ 10 % increase at central eta


https://alice-notes.web.cern.ch/node/676

Most of the boundary error distortion are phi symmetric
* Central electrode ¢ symmetry
* ROC - cover %20 symmetry

Sharp edges - gradient comparable with RMS of distortion fluctuation
* in mean distortion map will be “smeared out”

For RUN3 calibration proposal is to calibrate BE separately:
* create “analytical model” or data driven template model

* incase distortion change in time (e.g charging up), partial maps to be re-
scaled

Procedure should be tested with RUN2 data:
* Test scaling assumptions
* Provide higher quality RUN2 data




Machine learning consideration




Convolutional neural network- U net used AR(Ap)
* translation symmetry assumption used
* asymmetry in solution should only due asymmetries in p

Distortion are not linearly scaling with density, Local derivative of distortion
are position dependent

* distortions are saturating (e.g. can not be bigger than TPC size)
* additional information to be added to training

* we propose experimentally measured local derivative

lon feedback (position dependent) need to be calibrated - not straightforward
* using experimentally observed value of derivative preferable

ExB is breaking symmetry:

* Using rotated vector AR*,AR@™* instead of the AR, ARp impact of symmetry
breaking




Current version of neural network is ignoring distortion due boundary effect

* measured distortion maps edge distortion smeared by distortion fluctuation

Several ways to treat them in the future:

* add boundary error to input simulation
* distortion due boundary error change in time (e.g CE charging up)
* few (1 for the CE) parameter model preferable

* add effective correction as a patch for the “standard” NN

* Disentangle between the space charge and BE using local distortion
instead of the global distortion

In all cases we should be ready with analytical models/templates for the
boundary distortion in advance

* obtain model/templates
* prepare time dependent calibration of model (local scaling)
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Figure 7.12: xy projection of the r¢ distortion map close to the TPC central electrode (at z = 10cm). The data are based

on a detailed 3-dimensional space charge map normalized to € = 5 (in order to avoid complications due to non-
linearities). The figures illustrate the effect of a sector modulation that is modified by the magnetic field, which is
setto B=0T (left) and B=0.5T (right).
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Density profile p
« dot line - idealistic
e full line - including &(r,ro)
Density decomposition:
+ flat density
* A missing charge at dead zon

bs tan(®)

L L 1 L
12 14 16 18
sector

S % ¢ Large gradient of the Arg* distortion at the sector
Qg boundaries
B c— =i Density p(r,rg,z) can be decomposed to “flat” density
= S component and A density component (~plane
2\
charge)

Using Ap(r,rg,z) = A(A(r,rg,z)) - <A A density>

25050 200 -150 -100 50 0 50 100 150 200 250

x (cm) ° ° L) °
o . component (~plane charge) distribution is
igure 7.12: xy projection of the r¢ distortion map close to the
detailed 3-di ional hi ° °
lineaites. The figuresillustate the efec o asectc gaussian with o~c,

set to B=0T (left) and B=0.5T (right).



r = krrRAR + krReARe

~—~
o =
~— —

rRe = krRoRAR + kR¢RAR

Local distortion AL can be approximated by Langewin equation. trajectory
depends on the E, field, B field and wt

E field:

* E field ~ @ symmetric

* E,field << E.,+ plane charge component
B field:

* B,(r,rg,z) ~0.5T+1-2%

* B,(r,re,z) - @ modulated - B field center is shfifted
Approximated transformation * - A* defined by E field and p

Effect to be quantified



Backup




Offline week 2020

* https://indico.cern.ch/event/896796/contributions/3784060/attachments/
2007406/3353024/ATO 490-NeuralNettwork_AndNDPipeline.pdf

* ATO-490-NeuralNettwork_AndNDPipeline.pdf
* ATO-490-DataDrivenCorrection_1903.pdf

Offline week 2011:

https://indico.cern.ch/event/128634/contributions/112892/attachments/8627
5/ 123631/TPCSpaceP0|ntcorect|on pdf

* TPCSpacePointcorection.pdf

Tracking workshop:

* https://indico.gsi.de/event/1469/contributions/4047/attachments/3283/4
132/AliceTracking.pdf

* AliceTracking.pdf

TPC planning meeting -tracking perfromance and distrotion calibration
* https://indico.cern.ch/event/174670/
*  MITPCPlanningMeeting0202.odp


https://indico.cern.ch/event/896796/contributions/3784060/attachments/2007406/3353024/ATO-490-NeuralNettwork_AndNDPipeline.pdf
https://indico.cern.ch/event/896796/contributions/3784060/attachments/2007406/3353024/ATO-490-NeuralNettwork_AndNDPipeline.pdf
https://indico.cern.ch/event/128634/contributions/112892/attachments/86275/123631/TPCSpacePointcorection.pdf
https://indico.cern.ch/event/128634/contributions/112892/attachments/86275/123631/TPCSpacePointcorection.pdf
https://indico.gsi.de/event/1469/contributions/4047/attachments/3283/4132/AliceTracking.pdf
https://indico.gsi.de/event/1469/contributions/4047/attachments/3283/4132/AliceTracking.pdf

Links to some my old TPC/TDR presentations:
* /eos/user/t/tpcdrop/www/TPCTDR.backupMI/
* /data2/miranov/TPCTDR

Links to all distortion calibration should be in /eos and Wiki
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