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Introduction

» In this presentation, | will discuss development of the RNN neutrino
energy estimator for the NOvA neutrino oscillation experiment.

» NOvA (NuMI Off-Axis v, Appearance) — a long baseline accelerator
based neutrino oscillation experiment.

» Plan of the talk:
» Overview of the NOVA experiment.
» Overview of the neutrino energy estimation at NOvA.
» Development of the RNN energy estimator.
» Other applications of the RNN architecture.
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Neutrino Oscillation

» Three generations (flavors) of neutrinos are known: ve, v, v-.

> |t was discovered, that neutrinos change their flavor over time.

» Probability P, ., of neutrino changing its flavor is a periodic
function of time — phenomenon known as Neutrino Oscillation.

» By measuring neutrino oscillation probability P, _,,, we can get

estimates of the fundamental parameters of the neutrino physics:

Am3,, Am3,, 015, 023, b3, dcp
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NOvVA Overview
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» NOVA detects neutrinos with two finely
grained liquid scintillator detectors.
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NOvA Detectors

155 m

Far Detector

Near Detector (L ~ 1km, M ~ 300ton) measures original beam.
Far Detector (L ~ 810km, M ~ 14 kton) measures oscillated beam.
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NOvVA Detector Technology

» Basic unit of a detector is a long plastic tube
with liquid scintillator (cell).

» Light is collected by an optical fiber and
detected by an APD.

» Cells are combined into planes. Planes are
stacked in alternating directions.
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of Activity in the NOVA Far Detector

NOVA - FNAL E929

Run: 22357/1
Event: 16934 / -

UTC Sun Feb 28, 2016
14:44:25.490674976

550 pus window of Data
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NOvVA Physics

» NOVA performs two main analyses to constrain neutrino oscillation
parameters:

1. v, Disappearance Analysis measuring P, _,,
2. ve Appearance Analysis measuring P, ;.

for neutrinos and antineutrinos.
> Sensitive to the atmospheric oscillation sector: Am3,, 623, dcp.

» NOVA could help resolve some unanswered qustions about neutrino
physics:
» Neutrino Mass Hierarchy question?
» Whether 023 = /47
» Whether CP symmetry is violated in the neutrino sector?
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v,, Disappearance Analysis

» v, Disappearance Analysis is to estimate neutrino oscillation
2 . - g
parameters {Ams3,, 623}, by measuring survival probability of the v,
neutrinos at the Far Detector:

Py, v, (E,L;{Am3,, 003, ...})

» In order to make inferences about neutrino oscillation parameters
{Am3,, 023}, we need to identify v, neutrinos and estimate their
energies.

» The only reliable way to identify v, is when it interacts via the
Charged Current interaction with the detector: v, — p + Had
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Example of v, Charged Current Event
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Example of v, CC event: v, — 1+ Had

Dmitrii Torbunov 10/40



The Standard v, Energy Estimator

» The Standard Energy Estimator of v, CC events (v, — p + Had)
exploits domain knowledge.

» It works in three steps:

1. Identify p track and estimate E, from its track length.
2. Estimate Ena.g from the calorimetric energy of its hits.
3. By, = B+ Enag

> |t relies on the fact that u tracks are relatively easy to identify, and
that u energy deposition rate dE/dx is well known.
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True Muon Energy (GeV)

The Standard v, Energy Estimator, 2

Neutrino Beam NOVA Simulation
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Hadronic Energy component has large variance not explained by a total
calorimetric energy
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Can we estimate v, energy better?

» The Standard v, CC energy estimator has acceptable performance,
since on average for selected events 2/3 of £, energy comes from
E, and only 1/3 comes from Eyag.

» How can we improve NOVA v,, CC energy estimator?

> At NOvVA we can reconstruct clusters of hits (prongs), that
correspond to individual particles at each event.
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Particle Reconstruction
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NOvVA can reconstruct clusters of hits of individual particles:
» Find number of hits and calorimetric energies
» Estimate dimensions and directions
» Predict type of the particle

» Estimate energies and momenta of particles
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RNN Energy Estimator

» We would like to use information from each particle as input to a
new energy estimator.

» However, the number of particles (and prongs) varies between
events.

» We needed a model that is capable of processing inputs of varying
length.

» Recurrent Neural Networks are capable of handling inputs of varying
lengths.
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Recurrent Neural Network, 1
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Recurrent Neural Network is a feed-forward neural network that is applied
sequentially over inputs.
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Recurrent Neural Network, 2

RNN RNN
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Xa Xs3 coe X

At each step network reads information from inputs and from the
previous memory state, and outputs a new memory state.
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Recurrent Neural Network, 3

RNN RNN RNN
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At each step network reads information from inputs and from the
previous memory state, and outputs a new memory state.
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Recurrent Neural Network, 4

RNN RNN RNN RNN
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After all inputs have been processed, we extract output from the memory
of the recurrent neural network.
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RNN Energy Estimator. Data Formats

» Rapid prototyping of Neural Networks is possible in Python and
requires GPU enabled machines.

» NOvVA dataset has size of about &~ 1 TB and cannot be easily
accessed from Python nor transferred to a GPU cluster.

» | have designed an intermediate data format to extract relevant
variables from NOvA ROOT files and transfer them to the GPU
cluster, reducing dataset size down to ~ 1 GB

Dmitrii Torbunov 20/40



Architecture of the Recurrent Energy Estimator, Overview

Inputs

Outputs
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Long Short-Term Memory Cells are used to process fully reconstructed
prongs (3D) and partially reconstructed prongs (2D)
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Architecture of the Recurrent Energy Estimator, 3D Prong

png3d

Information from fully reconstructed prongs (3D) is preprocessed through
a set of Dense layers and fed to a LSTM Cell.
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Architecture of the Recurrent Energy Estimator, 2D Prong

png2d

Information from partially reconstructed prongs (2D) is fed through
another branch of Dense layers and LSTM Cell
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Architecture of the Recurrent Energy Estimator, Output
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Outputs of LSTM Cells are combined with global information about
event and used to predict ¢ and v, energies.
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Performance of the Recurrent Energy Estimator
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RNN energy estimator is better than the standard in terms of RMS 9.4%
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Absense of Labeled Data and Monte Carlo Simulation
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Humans cannot accurately identify event types, much less predict
neutrino energies. We use Monte Carlo simulation to get labeled data.
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Monte Carlo Simulation

» We use Monte Carlo simulation of neutrino interactions in order to
train Machine/Deep Learning algorithms.

» Unfortunately, we do not have precise model of physical interactions,
therefore results of this simulation are not fully accurate.

» We use systematic uncertainties in order to estimate errors of Monte
Carlo simulation.
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Systematic Uncertainties
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Precision of measurements of oscillation parameters is limited by
systematic uncertainties.
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Data Augmentation to Reduce Sensitivity to Systematic

» We would like to reduce sensitivity of the RNN energy estimator to
the Calibration systematic uncertainty.

» [t is possible to reduce sensitivity of an ML model to a systematic
uncertainty of its inputs by adding random noise to the uncertain
inputs.

» | have studied effects of addition of random noise in a way that
emulates the effect of the Calibration systematic.
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Sensitivity to the Calibration Systematic
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RNN EE can be made 5 times less sensitive to the Calibration systematic
than the Standard EE
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Effects of Using the RNN Energy Estimator

» New RNN energy estimator has 15% better energy reconstruction.

» New RNN energy estimator is 5 times less sensitive to the major
systematic uncertainty at NOVA.

> (Tentative Results) Improvement due to usage of the RNN EE is
equivalent to 10 — 50% of additional data with the Standard EE.
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NOvVA Oscillation Parameter Contours
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NOvVA Oscillation Parameter Contours, With 10% more Data
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(Tentative Results) With of 10% of extra data the Standard EE
performance does not match performance of the RNN EE.
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NOvVA Oscillation Parameter Contours, With 20% more Data
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(Tentative Results) With of 20% of extra data the Standard EE
performance matches RNN for sin? 03
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NOvVA Oscillation Parameter Contours, With 30% more Data
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(Tentative Results) Even with 30% of extra data the Standard EE
performance does not match RNN for Am3,
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Usage of RNN Architecture for Event Classification

» NOVA relies on a CNN classifier in order to predict neutrino
interaction type.

» However, CNNs are difficult to interpret from a physical point of
view, and difficult to assess impact of systematic uncertainties on
their output.

> NOVA needed an interpretable version of the event classifier to cross
validate CNN classifier results.
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Recall. RNN vs CNN
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(a) RNN using only high-level information  (b) CNN using all available information
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Usage of RNN Architecture for Event Classification, 2

» | have adapted the RNN energy estimator architecture to the task of
event classification.

» The RNN event classifier has slightly lower performance (within 5%)
compared to the CNN one, since it uses much less information as
inputs.

» But the RNN classifier is easy to interpret and it is about 100 times
faster to run.
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Adoption of RNN Energy Estimator to Other Experiments

» | have developed an intermediate data format, data pipelines and
the python package to train the RNN energy estimator, that are not
specific to the NOVA experiment.

» They can be used to easily develop an RNN energy estimator for
other experiments.

» Right now, | am porting the NOvA RNN EE to DUNE experiment,
and it shows very promising results.
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Conclusions

» | have developed an RNN energy estimator for the NOvA
experiment, that has 15% better energy reconstruction and 5 times
less sensitive to the major systematic uncertainty at NOvA.

» It may significantly improve performance of the NOvA experiment,
pending further testing.

» The architecture of the RNN energy estimator can be easily adapted
to the task of event classification, and ported to other experiments.

Dmitrii Torbunov 40/40



Dmitrii Torbunov

Backups

1/5



NOvVA Event Topologies
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Precision. SliceLID vs CVN
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t-SNE. SliceLID
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LSTM Neural Cell
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Source: https://arxiv.org/abs/1808.05578
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