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Abstract

We search for an isotropic stochastic gravitational-wave background (GWB) in the 12.5yr pulsar-timing data set
collected by the North American Nanohertz Observatory for Gravitational Waves. Our analysis finds strong evidence of a
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stochastic process, modeled as a power law, with common amplitude and spectral slope across pulsars. Under our fiducial
model, the Bayesian posterior of the amplitude for an f−2/3 power-law spectrum, expressed as the characteristic GW
strain, has median 1.92×10−15 and 5%–95% quantiles of 1.37–2.67×10−15 at a reference frequency of = -f 1 yr ;yr

1

the Bayes factor in favor of the common-spectrum process versus independent red-noise processes in each pulsar exceeds
10,000. However, we find no statistically significant evidence that this process has quadrupolar spatial correlations, which
we would consider necessary to claim a GWB detection consistent with general relativity. We find that the process has
neither monopolar nor dipolar correlations, which may arise from, for example, reference clock or solar system ephemeris
systematics, respectively. The amplitude posterior has significant support above previously reported upper limits; we
explain this in terms of the Bayesian priors assumed for intrinsic pulsar red noise. We examine potential implications for
the supermassive black hole binary population under the hypothesis that the signal is indeed astrophysical in nature.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Pulsar timing method (1305); Astronomy data
analysis (1858); Millisecond pulsars (1062)

1. Introduction

Pulsar-timing arrays (PTAs; Sazhin 1978; Detweiler 1979;
Foster & Backer 1990) seek to detect very-low-frequency
(∼1–100 nHz) gravitational waves (GWs) by monitoring the
spatially correlated fluctuations induced by the waves on the
times of arrival of radio pulses from millisecond pulsars
(MSPs). The dominant source of gravitational radiation in this
band is expected to be the stochastic background generated by
a cosmic population of supermassive black hole binaries
(SMBHBs; Sesana et al. 2004; Burke-Spolaor et al. 2019).
Other more speculative stochastic GW sources in the nanohertz
frequency range include cosmic strings (Siemens et al. 2007;
Blanco-Pillado et al. 2018), phase transitions (Caprini et al.
2010; Kobakhidze et al. 2017), and a primordial GW
background (GWB) produced by quantum fluctuations of the
gravitational field in the early universe, amplified by inflation
(Grishchuk 1975; Lasky et al. 2016).

The North American Nanohertz Observatory for Gravita-
tional Waves (NANOGrav; Ransom et al. 2019) has been
acquiring pulsar-timing data since 2004. NANOGrav is one of
three major PTAs along with the European Pulsar Timing
Array (EPTA; Desvignes et al. 2016) and the Parkes Pulsar
Timing Array (PPTA; Kerr et al. 2020). Additionally, there are
growing PTA efforts in India (Joshi et al. 2018) and China
(Lee 2016), as well as some telescope-centered timing
programs (Bailes et al. 2016; Ng 2018). In concert, these
collaborations support the International Pulsar Timing Array
(IPTA; Perera et al. 2019). Over the last decade, PTAs have
produced increasingly sensitive data sets, as seen in the steady
march of declining upper limits on the stochastic GWB (van
Haasteren et al. 2011; Demorest et al. 2013; Shannon et al.
2013; Lentati et al. 2015; Shannon et al. 2015; Arzoumanian
et al. 2016, 2018a; Verbiest et al. 2016). It was widely expected
that the first inklings of a GWB would manifest in the
stagnation of improvement in upper limits, followed by the
emergence of a spatially uncorrelated common-spectrum red
process in all pulsars, and culminate in the detection of
interpulsar spatial correlations with the quadrupolar signature
described by Hellings & Downs (1983). In practice, it appears
that early indications of a signal may have been obscured by
systematic effects due to incomplete knowledge of the assumed
position of the solar system barycenter (Vallisneri et al. 2020).

In this article, we present our analysis of NANOGravʼs
newest “12.5yr” data set (Alam et al. 2021a, hereafter NG12).
We find a strong preference for a stochastic common-spectrum
process, modeled as a power law, in the timing behaviors of all
pulsars in the data set. Building on the statistical-inference
framework put in place during our GW study of the 11yr data

set (Arzoumanian et al. 2018a, hereafter NG11gwb), we report
Bayes factors from extensive model comparisons. We find the
log10 Bayes factor for a spatially uncorrelated common-
spectrum process versus independent red-noise processes in
each pulsar to range from 2.7 to 4.5, depending on which solar
system ephemeris (SSE) modeling scheme we employ. We
model a spatially uncorrelated common-spectrum process to
have the same power spectral density across all pulsars in the
data set, but with independent realizations in the specific timing
behavior of each pulsar. The evidence is only slightly higher
for a common-spectrum process with quadrupolar correlations,
with a log10 Bayes factor against a spatially uncorrelated
common-spectrum process ranging from 0.37 to 0.64, again
depending on SSE modeling. Correspondingly, the Bayesian–
frequentist hybrid optimal-statistic analysis (Anholm et al.
2009; Demorest et al. 2013; Chamberlin et al. 2015; Vigeland
et al. 2018), which measures interpulsar correlated power only,
is unable to distinguish between different spatially correlated
processes. Thus, lacking definitive evidence of quadrupolar
spatial correlations, the analysis of this data set must be
considered inconclusive with regard to GW detection.
With an eye toward searches in future, more informative data

sets, we perform a suite of statistical tests on the robustness of
our findings. Focusing first on the stochastic common-spectrum
process, we examine the contribution of each pulsar to the
overall Bayes factor with a dropout analysis (Aggarwal et al.
2019; S. Vigeland et al. 2020, in preparation) and find broad
support among the pulsars in the data set. Moving on to spatial
correlations, we build null background distributions for the
correlation statistics by applying random phase shifts and sky
scrambles to our data (Cornish & Sampson 2016; Taylor et al.
2017a) and find that the no-correlations hypothesis is rejected
only mildly, with p values ∼5% (i.e., 2σ).
The posterior on the amplitude of the common-spectrum

process, ACP, modeled with an f−2/3 power-law spectrum, has
a median of 1.9×10−15, with 5%–95% quantiles of
1.4–2.7×10−15 at a reference frequency of = -f 1yryr

1,
based on a log-uniform prior and using the latest JPL SSE
(DE438, Folkner & Park 2018), which we take as our fiducial
model in this paper. This refined version of the SSE
incorporates data from the NASA orbiter Juno45 and claims a
Jupiter orbit accuracy a factor of 4 better than previous SSEs,
which is promising given that our previous analysis showed
that errors in Jupiterʼs orbit dominated the SSE-induced GWB
systematics (Vallisneri et al. 2020).

45 https://www.missionjuno.swri.edu

2
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The fact that the median value of ACP is higher than the 95%
upper limit reported for the 11yr data set, < ´ -A 1.45 10GWB

15

(NG11gwb), requires explanation. While many factors contribute
to this discrepancy, simulations show that the standard PTA data
model (and most crucially, the uniform priors on the amplitude of
pulsar-intrinsic red-noise processes) can often yield Bayesian upper
limits lower than the true GWB level by shifting GWB power to
pulsar red noise (Hazboun et al. 2020a). Once all factors are taken
into account, the data sets can be reconciled. However, this
accounting suggests that the astrophysical interpretation of past
Bayesian upper limits from PTAs may have been overstated.
Indeed, it is worth noting that while the source of the common-
spectrum process in this data set remains unconfirmed, the
posterior on ACP is compatible with many models for the GWB
that had previously been deemed in tension with PTA analyses.

This paper is laid out as follows: Section 2 describes the
12.5yr data set. Our data model is presented in Section 3. In
Section 4, we report on our search for a common-spectrum
process in the data set and present the results from our
extensive exploration for interpulsar correlations. Section 5
contains a suite of statistical checks on the significance of our
detection metrics. In Section 6, we discuss the amplitude of the
recovered process, addressing both the discrepancies with
previous published upper limits and the potential implications
for the SMBHB population, and we conclude with our
expectations for future searches.

2. The 12.5yr Data Set

The NANOGrav 12.5yr data set has been released using two
separate and independent analyses. The narrowband analysis,
consisting of the time-of-arrival (TOA) data and pulsar-timing
models presented in NG12, is very similar in its form and
construction to our previous data sets in which many TOAs were
calculated within narrow radio-frequency bands for data collected
simultaneously across a wide bandwidth. A separate “wideband”
analysis (Alam et al. 2021b) was also performed in which a single
TOA is extracted from broadband observations. Both versions of
the data set are publicly available online.46 The data set consists
of observations of 47 MSPs made between 2004 July and 2017
June. This is the fourth public NANOGrav data set and adds
two MSPs and 1.5 yr of observations to the previously released
11yr data set (NG11). Only pulsars with a timing baseline
greater than 3 yr are used in our GW analyses (Arzoumanian
et al. 2016, hereafter NG9gwb), and thus all results in this
paper are based on the 45 pulsars that meet that criteria. This is
a significant increase from the analyses in NG11gwb, which
used 34 pulsars, and the analyses in NG9gwb, which used 18.
Additionally, it is crucial to note that the 12.5yr data set is
more than just an extension of the 11yr data set—changes to
the data-processing pipeline, discussed below, have improved
the entire span of the data. In the following section, we briefly
summarize the instruments, observations, and data reduction
process for the 12.5yr data set. A more detailed discussion of
the data set can be found in NG12.

2.1. Observations

We used the 305m Arecibo Observatory (Arecibo or AO)
and the 100m Green Bank Telescope (GBT) to observe the
pulsars. Arecibo observed all sources that lie within its decl.

range (0°<δ<+39°), while GBT observed those sources
that lie outside of Areciboʼs decl. range, plus PSRs J1713
+0747 and B1937+21. Most sources were observed approxi-
mately once per month. Six pulsars were observed weekly as
part of a high-cadence observing campaign, which began at the
GBT in 2013 and at AO in 2015 with the goal of improving our
sensitivity to individual GW sources (Burt et al. 2011; Christy
et al. 2014): PSRs J0030+0451, J1640+2224, J1713+0747,
J1909−3744, J2043+1711, and J2317+1439.
Early observations were recorded using the ASP and GASP

systems at Arecibo and GBT, respectively, which sampled
bandwidths of 64 MHz (Demorest 2007). Between 2010 and
2012, we transitioned to wideband systems (PUPPI at Arecibo
and GUPPI at GBT) that can process up to 800 MHz
bandwidths (DuPlain et al. 2008; Ford et al. 2010). At most
observing epochs, the pulsars were observed with two different
wideband receivers covering different frequency ranges in
order to achieve good sensitivity in the measurement of pulse
dispersion due to the interstellar medium. At Arecibo, the
pulsars were observed using the 1.4 GHz receiver plus either
the 430 MHz receiver or 2.1 GHz receiver, depending on the
pulsarʼs spectral index and timing characteristics. (Early
observations of one pulsar also used the 327 MHz receiver.)
At GBT, the monthly observations used the 820 MHz and
1.4 GHz receivers. However, these two separate frequency
ranges were not observed simultaneously; instead, the
observations were separated by a few days. The weekly
observations at GBT used only the 1.4 GHz receiver.

2.2. Processing and Time-of-arrival Data

Most of the procedures used to reduce the data, generate the
TOAs, and clean the data set were similar to those used to
generate previous NANOGrav data sets (NG9, NG11); how-
ever, several new steps were added. We improved the data
reduction pipeline by removing low-amplitude artifact images
from the profile data that are caused by small mismatches in the
gains and timing of the interleaved analog-to-digital converters
in the backends. We also excised radio-frequency interference
(RFI) from the calibration files as well as the data files.
We used the same procedures as in NG9 and NG11 to

generate the TOAs from the profile data. As we have done in
previous data sets, we cleaned the TOAs by removing RFI, low
signal-to-noise TOAs (NG9), and outliers (NG11). Compared
to previous data sets, we reorganized and systematized the
TOA cleaning and timing-model parameter selection processes
to improve consistency of processing across all pulsars. We
also performed a new test where observing epochs were
removed one by one to determine whether removing a
particular epoch significantly changed the timing model. This
is essentially an outlier analysis for observing epochs rather
than individual TOAs.

2.3. Timing Models and Noise Analysis

For each pulsar, the cleaned TOAs were fit to a timing model
that described the pulsarʼs spin period and spin period
derivative, sky location, proper motion, and parallax. For
binary pulsars, the timing model also included five Keplerian
binary parameters and additional post-Keplerian parameters if
they improved the timing fit as determined by an F test. We
modeled variations in the pulse dispersion as a piecewise
constant through the inclusion of DMX parameters (NG9;46 http://data.nanograv.org
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Jones et al. 2017). The timing-model fits were primarily
performed using the TEMPO timing software, and the software
packages TEMPO2 and PINT were used to check for consistency.
The timing-model fits were done using the TT(BIPM2017)
timescale and the JPL SSE model DE436 (Folkner &
Park 2016). The latest JPL SSE (DE438; Folkner & Park 2018),
which we take as our fiducial model for the analyses in this
paper, was not available when TOA processing was being
done. However, this does not affect the results presented later,
as the corresponding changes in the timing parameters are well
within their linear range, which is marginalized away in the
analysis (NG9, NG9gwb).

We modeled noise in the pulsars’ residuals with three white-
noise components plus a red-noise component. The white-noise
components are EQUAD, which adds white noise in
quadrature; ECORR, which describes white noise that is
correlated within the same observing epoch but uncorrelated
between different observing epochs; and EFAC, which scales
the total template-fitting TOA uncertainty after the inclusion of
the previous two white-noise terms. For all of these
components, we used separate parameters for every combina-
tion of pulsar, backend, and receiver.

Many processes can produce red noise in pulsar residuals. The
stochastic GWB appears in the residuals as red noise; however, it
appears specifically correlated between different pulsars (Hel-
lings & Downs 1983). Other astrophysical sources of red noise
include spin noise, pulse profile changes, and imperfectly
modeled dispersion-measure variations (Cordes 2013; Jones
et al. 2017; Lam et al. 2017). These red-noise sources are unique
to a given pulsar. There are also potential terrestrial sources of
red noise, including clock errors and ephemeris errors (Tiburzi
et al. 2016), which are correlated differently than the GWB. We
model the intrinsic red noise of each pulsar as a power law,
similar to the GWB (see Section 3.1).

The changes to the data-processing procedure described
above significantly improved the quality of the data. In order to
quantify the effect of these changes, we produced an “11yr
slice” data set by truncating the 12.5yr data set at the MJD
corresponding to the last observation in the 11yr data set and
compared the results of a full noise analysis of this data set to
those for the 11yr data set. As discussed in NG12, we found a
reduction in the amount of white noise in the 11yr slice
compared to the 11yr data set. However, we also found that
the red noise changed for many pulsars. Specifically, there is a
slight preference for a steeper spectral index across most of the
pulsars, indicating that for some pulsars, the reduction in white
noise produced an increased sensitivity to low-frequency red-
noise processes, like the GWB.

3. Data Model

The statistical framework for the characterization of noise
processes and GW signals in pulsar-timing data is well
documented (see e.g., NG9gwb; NG11gwb). In this section,
we give a concise description of our probabilistic model of the
12.5yr data set, focusing on the differences from earlier
studies. The model attempts to represent every known
deterministic and stochastic source of timing residuals that
could be interpreted as GWs: it extends the individual timing
models of the pulsars (discussed in Section 2.3) by adding
common-spectrum processes with specific correlation struc-
tures between pulsars. In Section 3.1, we define our spectral
models of time-correlated (red) processes, which include

pulsar-intrinsic red noise and the GWB; in Section 3.2, we
list the combinations of time-correlated processes included in
our Bayesian model-comparison trials; and in Section 3.3, we
discuss our prescriptions for the SSE. Our Bayesian and
frequentist techniques of choice will be described alongside our
results in Sections 4 and 5, with more technical details in
Appendices B and C.

3.1. Models of Time-correlated Processes

The principal results of this paper are referred to a fiducial
power-law spectrum of the characteristic GW strain:
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with α=−2/3 for a population of inspiraling SMBHBs in
circular orbits whose evolution is dominated by GW emission
(Phinney 2001). We performed our analysis in terms of the
timing-residual cross-power spectral density,
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where γ=3−2α (so the fiducial SMBHB α=−2/3
corresponds to γ=13/3) and where Γab is the overlap
reduction function (ORF), which describes average correlations
between pulsars a and b in the array as a function of the angle
between them. For an isotropic GWB, the ORF is given by
Hellings & Downs (1983), and we refer to it casually as
“quadrupolar” or “HD” correlations.
Other spatially correlated effects present with different

ORFs. Systematic errors in the SSE have a dipolar ORF,
zG = cosab ab, where ζab represents the angle between pulsars a

and b, while errors in the timescale (the “clock”) have a
monopolar ORF, Γab=1. Pulsar-intrinsic red noise is also
modeled as a power law; however, in that case, there is no
ORF. The AGWB in Equation (2) is replaced with Ared, and γ
with γred. There is a separate (Ared, γred) pair for each pulsar in
the array.
As in NG9gwb and NG11gwb, we implemented stationary

Gaussian processes with a power-law spectrum in rank-reduced
fashion by approximating them as a sum over a sine–cosine
Fourier basis with frequencies k/T and prior (weight)
covariance S k T Tab ( ) , where T is the span between the
minimum and maximum TOAs in the array (van Haasteren &
Vallisneri 2014). We use the same basis vectors to model all
red noise in the array, both pulsar-intrinsic noise and global
signals, like the GWB. Using a common set of vectors helps the
sampling and reduces the likelihood computation time. In
previous work, the number of basis vectors was chosen to be
large enough (with k=1,K, 30) that inference results
(specifically the Bayesian upper limit) for a common-spectrum
signal became insensitive to adding more components.
However, doing so has the disadvantage of potentially coupling
white noise to the highest-frequency components of the red-
noise process, thus biasing the recovery of the putative GWB,
which is strongest in the lowest frequency bins.
For this paper, we revisit the issue and set the number of

frequency components used to model common-spectrum
signals to five, on the basis of theoretical arguments backed
by a preliminary analysis of the data set. We begin with the
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former. By computing a strain-spectrum sensitivity curve for
the 12.5yr data set using the HASASIA tool (Hazboun et al.
2019) and obtaining the signal-to-noise ratio (S/N) of a
γ=13/3 power-law GWB, we observed that the five lowest
frequency bins contribute 99.98% of the S/N, with the majority
coming from the first bin. We also injected a γ=13/3 power-
law GWB into the 11yr data set (NG11), and measured the
response of each frequency using a 30-frequency free-spectrum
model, in which we allowed the variance of each sine–cosine
pair in the red-noise Fourier basis to vary independently. We
observed that the lowest few frequencies are the first to respond
as we raised the GWB amplitude from undetectable to
detectable levels (see Figure 14 in Appendix A). The details
of this injection analysis are described in Appendix A.

Moving on to empirical arguments, in Figure 1 we plot the
power-spectrum estimates for a spatially uncorrelated common-
spectrum process in the 12.5yr data set, as computed for the
following: a free-spectrum model (gray violin plots); variable-γ
power-law models (Equation (2) with =A AGWB CP and

dG =ab ab) with 5 and 30 frequency components (dashed lines,
showing maximum a posteriori values, as well as 1σ/2σ posterior
contours); and a broken power-law model (solid lines), given by
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where γ and δ are the slopes at frequencies lower and higher
than fbend, respectively, and κ controls the smoothness of the
transition. In this paper, we set δ=0 to appropriately capture
the white noise coupled at higher frequencies and κ=0.1,
which is small enough to contain the transition between slopes
to within an individual frequency bin. Both the free spectrum
and the broken power law capture a steep red process at the
lowest frequencies, in accordance with expectations for a
GWB, which is accompanied by a flatter “forest” at higher

frequencies. The 30-frequency power law is impacted by power
at high frequencies (where we do not expect any detectable
contributions from a GWB) and adopts a low spectral index
that does not capture the full power in the lowest frequencies.
By contrast, the five-frequency power law agrees with the free
spectrum and broken power law in recovering a steep-spectral
process.
The problem of pulsar-intrinsic excess noise leaking into the

common-spectrum process at high frequencies has already been
discussed for the 9 and 11yr NANOGrav data sets (Aggarwal
et al. 2019, 2020; Hazboun et al. 2020b), and we are addressing
it through the creation of individually adapted noise models for
each pulsar (J. Simon et al. 2020, in preparation). For this
paper, we find a simpler solution by limiting all common-
spectrum models to the five lowest frequencies. By contrast, we
used 30 frequency components for all rank-reduced power-law
models of pulsar-intrinsic red noise,47 which is consistent with
what is used in individual pulsar noise analyses and in the
creation of the data set.

3.2. Models of Spatially Correlated Processes

We analyzed the 12.5yr data set using a hierarchy of data
models, which are compared in Bayesian fashion by evaluating
the ratios of their evidence. All models include the same basic
block for each pulsar, consisting of measurement noise, timing-
model errors, pulsar-intrinsic white noise, and pulsar-intrinsic
red noise described by a 30-frequency variable-γ power law,
but they differ by the presence of one or two red-noise
processes that appear in all pulsars with the same spectrum. As
in previous work (NG9gwb; NG11gwb), we fixed all pulsar-
intrinsic white-noise parameters to their maximum in the

Figure 1. Posteriors for a common-spectrum process in NG12, as recovered with four models: free spectrum (gray violin plots in left panel), broken power law (solid
blue lines and contours), 5-frequency power law (dashed orange lines and contours), and 30-frequency power law (dotted–dashed green lines and contours). In the left
panel, the violin plots show marginalized posteriors of the equivalent amplitude of the sine–cosine Fourier pair (i.e., S f T( ) , in units of seconds) at the frequencies
on the horizontal axis; the lines show the mean reconstructed power laws in the left panel, and the 1σ (thicker) and 2σ posterior contours for the amplitude and spectral
slope in the right panel. In the left panel, the shaded regions trace ±1σ ranges for the common-spectrum process power as a function of frequency, as implied by the
Bayesian posteriors for the power-law parameters. The dotted vertical line in the left panel sits at = -f 1yryr

1, where PTA sensitivity is reduced by the fitting of
timing-model parameters; the corresponding free-spectrum amplitude posterior is unconstrained. The dashed vertical line in the right panel sits at γ=13/3, the
expected value for a GWB produced by a population of inspiraling SMBHBs. For both the broken power-law and 5-frequency power-law models, the amplitude (ACP)
posterior shown on the right is extrapolated from the lowest frequencies to the reference frequency fyr. We observe that the slope and amplitude of the 30-frequency
power law are driven by higher-frequency noise, whereas the 5-frequency power law recovers the low-frequency GWB-like slope of the free spectrum and broken
power law.

47 The Fourier basis is still built on frequencies k/T, where T is the maximum
time span between TOAs in the array, and the same basis vectors are still used
for all red-noise models.
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posterior probability distribution recovered from single-pulsar
noise studies for computational efficiency.

The models are listed in Table 1, which also reports their
labels as used in NG11gwb. The most basic variant (model 1
in NG11gwb) includes measurement noise and pulsar-intrinsic
processes alone.

The next group of four models includes a single common-
spectrum red-noise process. The first among them (model 2A
of NG11gwb) features a GWB-like red-noise process with
common spectrum, but without HD correlations. Because we
expect the correlations to be much harder to detect than the
diagonal Saa terms in Equation (2), due to the values of the HD
ORF (Γab) being less than or equal to 0.5, and because the
corresponding likelihood, which does not include any correla-
tions, is very computationally efficient, this model has been the
workhorse of PTA searches. However, the positive identifica-
tion of a GWB will require evidence of a common-spectrum
process with HD correlations, which also belongs to this group
(model 3A of NG11gwb). The group is rounded out by
common-spectrum processes with dipolar and monopolar
spatial correlations, which may represent SSE and clock
anomalies. For a convincing GWB detection, we expect the
data to favor HD correlations strongly over dipolar, monopolar,
or no spatial correlations.

The last group includes an additional common-spectrum red-
noise process on top of the GWB-like common-spectrum HD-
correlated process. The second process is taken to have either
no spatial correlations, dipolar correlations, or monopolar
correlations.

3.3. Solar System Ephemeris

In the course of the GWB analysis of NANOGravʼs 11yr
data set (NG11gwb), we determined that GW statistics were
surprisingly sensitive to the choice of SSE, and we developed a
statistical treatment of SSE uncertainties (BAYESEPHEM;
Vallisneri et al. 2020), designed to harmonize GW results for
SSEs ranging from JPLʼs DE421 (published in 2009 and based
on data up to 2007) to DE436 (published in 2016, and based on
data up to 2015).

This was a rather conservative choice: it would be reasonable
to expect that more recent SSEs, based on larger data sets and
on more sophisticated data reduction, would be more accurate
—an expectation backed by the (somewhat fragmentary) error
estimates offered by SSE compilers. However, our analysis

showed that errors in Jupiterʼs orbit (which create an apparent
motion of the solar system barycenter and therefore a spurious
Rømer delay) dominate the GWB systematics and that Jupiterʼs
orbit has been adjusted across DE421–DE436 by amounts
(50 km) comparable to or larger than the stated uncertainties.
Thus, we decided to err on the side of caution, with the
understanding that the Bayesian marginalization over SSE
uncertainties would subtract power from the putative GWB
process, as confirmed by simulations (Vallisneri et al. 2020).
Luckily, these circumstances have since changed. Jupiterʼs

orbit is being refined with data from the NASA orbiter Juno:
the latest JPL SSE (DE438, Folkner & Park 2018) fits the range
and VLBI measurements from six perijoves and claims orbit
accuracy a factor of 4 better than previous SSEs (i.e., 10 km).
In addition, the longer time span of the 12.5yr data set (NG12)
reduces the degeneracy between a GWB and Jupiterʼs orbit
(Vallisneri et al. 2020). Accordingly, we adopt DE438 as the
fiducial SSE for the results reported in this paper. For
completeness and verification, we also report statistics obtained
with BAYESEPHEM, adopting the same treatment of NG11gwb;
and with the SSE INPOP19a (Fienga et al. 2019), which
incorporates range data from nine Juno perijoves.
The DE438 and INPOP19a Jupiter orbit estimates are not

entirely compatible, because the underlying data sets do not
overlap completely and are weighted differently; nevertheless,
the orbits differ in ways that affect GWB results only slightly,
which further increases our confidence in DE438. In our
analysis, we used DE438 and INPOP19a without uncertainty
corrections: while it is technically straightforward to constrain
BAYESEPHEM using the orbital-element covariance matrices
provided by the SSE authors, the resulting orbital perturbations
are so small that GW results are barely affected (Vallisneri
et al. 2020).

4. Gravitational-wave Background Estimates

Our Bayesian analysis of the 12.5yr data set shows
definitive evidence for the presence of a time-correlated
stochastic process with a common amplitude ACP and a
common spectral index γCP across all pulsars. Given this
finding, we do not quote an upper limit on a GWB amplitude as
in NG9gwb and NG11gwb, but rather report the median value
and 90% credible interval of ACP, as well as the log10 Bayes
factor for a common-spectrum process versus pulsar-intrinsic
red noise only. Further details of our Bayesian methodology
can be found in Appendix B. In addition, we characterize the
evidence for HD correlations, which we take as the crucial
marker of GWB detection, by obtaining the Bayes factors
between the models of Table 1.
Our results are presented in Section 4.1 and summarized in

Figures 2 and 3. In Sections 4.2 and 4.3, we explore the
evidence for spatial correlations further, by way of the optimal
statistic (Anholm et al. 2009; Demorest et al. 2013; Chamberlin
et al. 2015) and of a novel Bayesian technique that isolates the
cross-correlations in the Gaussian-process likelihood. The
statistical significance of our results for both the common-
spectrum process and HD correlations is examined in
Section 5.

4.1. Bayesian Analysis

Figure 2 shows marginalized ACP posteriors obtained from
the 12.5yr data using a model that includes pulsar-intrinsic red

Table 1
Data Models

NG11gwb
Labels 1 2A 2B 2D 3A (New) 3B 3D

Spatial
Correlations

Single Common-spectrum
Process

Two Common-spec-
trum Processes

Uncorrelated ✓ ✓
Dipole ✓ ✓
Monopole ✓ ✓
HD ✓ ✓ ✓ ✓

Pulsar-intrinsic
red-noise

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note. The data models analyzed in this paper are organized by the presence of
spatially correlated common-spectrum noise processes. Model names are added
for a direct comparison to the naming scheme employed in NG11gwb.
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noise plus a spatially uncorrelated common-spectrum process
with a fixed spectral index γCP=13/3. Following the
discussion of Section 3.1, the common-spectrum process is
represented by five sine–cosine pairs. The sine–cosine pairs are
modeled to have the same power spectral density, but the values
of the coefficients are independent across pulsars. By contrast, in
the spatially correlated models, the coefficients are constrained to
have the appropriate correlations according to the ORFs. Under
fixed ephemeris DE438, the ACP posterior has a median value of
1.92×10−15 with 5%–95% quantiles at 1.37–2.67×10−15;
the INPOP19a posterior is very close—a reassuring finding,
given that past versions of the JPL and INPOP SSEs led to
discrepant results (NG11gwb).

If we allow for BAYESEPHEM corrections to DE438, the ACP
posterior shifts lower, with median value of 1.53×10−15 and
5%–95% quantiles at 0.79–2.38×10−15; the posterior for
INPOP19a with BAYESEPHEM corrections is again very close. It
is well understood that BAYESEPHEM will absorb power from a
common-spectrum process (Roebber 2019; Vallisneri et al. 2020),
but we note that this coupling weakens with increasing data set
time span: it is weaker here than in the 11yr analysis and would
be even weaker with 15 yr of data (Vallisneri et al. 2020).

These peaked, compact ACP posteriors are accompanied by
large Bayes factors in favor of a spatially uncorrelated
common-spectrum process versus pulsar-intrinsic pulsar red
noise alone: log10 Bayes factor = 4.5 for DE438 and 2.7 with
BAYESEPHEM. Next, we assess the evidence for spatial
correlations by computing Bayes factors between the models in
Table 1. Our results are summarized in Table 2 and more
visually in Figure 3. There is little evidence for the addition of
HD correlations (log10 Bayes factor = 0.64 with DE438, 0.37
with BAYESEPHEM), and the HD-correlated ACP posteriors are
very similar to those of Figure 2. By contrast, monopolar and
dipolar correlations are moderately disfavored (log10 Bayes
factor=−2.3 and −2.4, respectively, with DE438). The
monopole is disfavored less under BAYESEPHEM, which may
be explained by the BAYESEPHEM-reduced amplitude of the
processes.

The evidence for a second common-spectrum process on top
of an HD-correlated process is inconclusive. Furthermore, the
amplitude posteriors for additional monopolar and dipolar
processes display no clear peaks, while the posterior for an
additional spatially uncorrelated process shows that power is
drawn away from the HD-correlated process (which is
understandable given the scant evidence for HD correlations).
We completed the same analyses with a common-spectrum

model where γCP was allowed to vary. As seen in Figure 1, the
posteriors on γCP, while consistent with 13/3 (≈4.33), are very
broad. Under fixed ephemeris DE438, the γCP posterior from a
spatially uncorrelated process has a median value of 5.52 with
5%–95% quantiles at 3.76–6.78. The amplitude posterior is
larger in this case, but that is due to the inherent degeneracy
between ACP and γ. The evidence for spatial correlations in a
varied-γCP model is almost identical to that reported in Table 2.
Altogether, the smaller Bayes factors in the discrimination of

spatial correlations are fully expected, given that spatial
correlations are encoded by the cross-terms in the interpulsar
covariance matrix, which are subdominant with respect to the
self-terms that drive the detection of a common-spectrum
process. Nevertheless, if a GWB is truly present, the Bayes
factors will continue to increase as data sets grow in time span
and number of pulsars. Indeed, the trends on display here are
broadly similar to the results of NG11gwb, but they have
become more marked.

4.2. Optimal Statistic

The optimal statistic (Anholm et al. 2009; Demorest et al.
2013; Chamberlin et al. 2015) is a frequentist estimator of the
amplitude of an HD-correlated process, built as a sum of
correlations among pulsar pairs, weighted by the assumed
pulsar-intrinsic and interpulsar noise covariances. It is a useful
complement to Bayesian techniques, specifically for the
characterization of spatial correlations. The statistic A

2ˆ is
defined by Equation (7) of NG11gwb, and it is related to the
GWB amplitude by á ñ =A A

2
GWB
2ˆ , where the mean is taken

over an ensemble of GWB realizations of the same AGWB. The
statistical significance of an observed A

2ˆ value is quantified by
the corresponding S/N (see Equation (8) of NG11gwb).
Table 3 and Figure 4 summarize the optimal-statistic

analysis of the 12.5yr data set. As in NG11gwb, we computed
two variants of the statistic: a fixed-noise version obtained by
fixing the pulsar red-noise parameters to their maximum
a posteriori values in Bayesian runs that include a spatially
uncorrelated common-spectrum process; and a noise-margin-
alized version (Vigeland et al. 2018), which has proven more
accurate when pulsars have intrinsic red noise, and which is
sampled over 10,000 red-noise parameter vectors drawn from
those same posteriors. For each variant, we computed versions
of the statistic tailored to HD, monopolar, and dipolar spatial
corrections.
We recovered similarly low S/N for all three correlation

patterns, indicating that the optimal statistic cannot distinguish
among them. Nevertheless, these results are markedly different
from those of NG11gwb, which found no trace of correlations.
The highest S/N is found for the monopolar process, which
may seem to be in conflict with the Bayes factors of Table 2;
however, Figure 4 shows that the corresponding amplitude
estimate A

2ˆ is more than a factor of 2 lower than implied by the
ACP posterior, shown there by the dashed curve. A compatible

Figure 2. Bayesian posteriors for the ( = -f 1 yryr
1) amplitude ACP of a

common-spectrum process, modeled as a γ=13/3 power law using only the
lowest five-component frequencies. The posteriors are computed for the
NANOGrav 12.5yr data set using individual ephemerides (solid lines) and
BAYESEPHEM (dotted). Unlike similar analyses in NG11gwb and Vallisneri
et al. (2020), these posteriors, even those using BAYESEPHEM, imply a strong
preference for a common-spectrum process. Results are consistent for both
recent SSEs (DE438 and INPOP19a) updated with Jupiter data from the Juno
mission. SSE corrections remain partially entangled with ACP. Thus, when
BAYESEPHEM is applied, the distributions broaden toward lower amplitudes,
shifting the peak of the distribution by ∼20%.
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amplitude estimate is found only for the HD process. In other
words, the optimal-statistic analysis is consistent with the
Bayesian analysis. They agree on the presence of an HD-
correlated process at the common amplitude indicated by the
Bayesian analysis, and both find it strongly unlikely that there
are monopolar or dipolar processes of equal amplitude. These
optimal-statistic results are robust with respect to changing γ

within the range recovered in Figure 1.
Figure 5 shows the angular distribution of cross-correlated

power for both NG11 and NG12, as obtained by grouping
pulsar pairs into angular-separation bins (with each bin hosting
a similar number of pairs). The error bars show the standard

deviations of angular separations and cross-correlated power
within each bin. The dashed and dotted lines show the values
expected theoretically from HD- and monopolar-correlated
processes with amplitudes set from the measured A

2ˆ (the first
column of Table 3). While errors are smaller for NG12 than
for NG11, neither correlation pattern is visually apparent.

4.3. Bayesian Measures of Spatial Correlation

Inspired by the optimal statistic, we have developed two
novel Bayesian schemes to assess spatial correlations. We
report here on their application to the 12.5yr data.
First, we performed Bayesian inference on a model where

the uncorrelated common-spectrum process is augmented with
a second HD-correlated process with autocorrelation coeffi-
cients set to zero. In other words, we decouple the amplitudes
of the auto- and cross-correlation terms. The uncorrelated
common-spectrum process regularizes the overall covariance
matrix, which would not otherwise be positive definite with this
new “off diagonal only” GWB. Figure 6 shows marginalized
amplitude posteriors for the diagonal and off-diagonal
processes, which appear consistent. It is however evident that
cross-correlations carry much weaker information: as a matter
of fact, the log10 Bayes factor in favor of the additional process
(computed à la Savage–Dickey; see Dickey 1971) is
0.10±0.01 with fixed DE438 and −0.03±0.01 under
BAYESEPHEM. These factors are smaller than the HD versus
uncorrelated values of Table 2, arguably because the off-

Figure 3. A visual representation of Bayesian model comparisons on the 12.5 yr data set. Each box represents a model from Table 1; arrows are annotated with the
log10 Bayes factor between the two models that they connect, computed for both fixed and BAYESEPHEM-corrected SSE. Moving from left to right, we find strong
evidence for a common-spectrum process, weak evidence for its HD correlations, moderately negative evidence for monopolar or dipolar correlations, and
approximately even odds for a second common-spectrum process. The log10 Bayes factor between any two models can be approximated by summing the values along
a path that connects them.

Table 2
Bayesian Model-comparison Scores

Uncorr. Process Dipole Mono. HD HD+dip. HD+mono. HD+uncorr.
Ephemeris versus Noise Only versus Uncorrelated Process versus HD-correlated Process

DE438 4.5(9) −2.4(2) −2.3(2) 0.64(1) −0.116(4) 0.126(4) 0.0164(1)

BAYESEPHEM 2.4(2) −2.3(2) −1.3(1) 0.371(5) −0.199(5) 0.217(6) 0.0621(4)

Note. The log10 Bayes factors between pairs of models from Table 1 are also visualized in Figure 3. All common-spectrum power-law processes are modeled with a
fixed spectral index γ=13/3 and with the lowest five frequency components. The digit in the parentheses gives the uncertainty on the last quoted digit.

Table 3
Optimal Statistic A

2ˆ and Corresponding S/N

Fixed Noise Noise Marginalized

Correlation A
2ˆ S/N Mean A

2ˆ Mean S/N

HD 4×10−30 2.8 2(1)×10−30 1.3(8)
Monopole 9×10−31 3.4 8(3)×10−31 2.6(8)
Dipole 9×10−31 2.4 5(3)×10−31 1.2(8)

Note. The optimal statistic, A
2ˆ , and corresponding S/N are computed from the

12.5yr data set for an HD-, monopolar-, and dipolar-correlated common
process modeled as a power law with fixed spectral index, γ=13/3, using the
five lowest frequency components. We show fixed intrinsic red-noise and
noise-marginalized values. All are computed with fixed ephemeris DE438.
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diagonal portion of the model is given the additional burden of
selecting the appropriate amplitude.

Second, we performed Bayesian inference on a common-
spectrum model that includes a parameterized ORF: specifically,
interpulsar correlations are obtained by the spline interpolation
of seven nodes spread across angular separations; node values
are estimated as independent parameters with uniform priors in
[−1, 1] (Taylor et al. 2013). Figure 7 shows the marginalized
posteriors of the angular correlations and bears a direct
comparison with Figure 5. The posteriors, although not very
informative, are consistent with the HD ORF, which is
overplotted in the figure. However, they are inconsistent with
the monopolar ORF, also overplotted in the figure. This behavior
is similar to the evidence reported in Table 2.

5. Statistical Significance

As described above, the 12.5yr data set offers strong
evidence for a spatially uncorrelated common-spectrum process
across pulsars in the data set, but it favors only slightly the
interpretation of this process as a GWB by way of HD
interpulsar correlations. In this section, we test the robustness
of the first statement by examining the contribution of each
pulsar to the overall Bayes factor, and we characterize the
statistical significance of the second by building virtual null
distributions for the HD detection statistics. We expect that
studies of both kinds will be important to establishing
confidence in future detection claims.

5.1. Characterizing the Evidence for a Common-spectrum
Process across the PTA

Under a model that includes a noise-like process of the
common spectrum across all pulsars without interpulsar
correlations, and in the absence of other physical effects
linking observations across pulsars (such as ephemeris
corrections), the PTA likelihood factorizes into individual
pulsar terms:

q q=
=

p d A p d A, , , 4j N j N
j

N

j jCP
1

CP({ } ∣{ } ) ( ∣ ) ( )

Figure 4. Distributions of the optimal statistic and S/N for HD (blue),
monopole (orange), and dipole (green) spatial correlations, as induced by the
posterior probability distributions of pulsar-intrinsic red-noise parameters in a
Bayesian inference run that includes a spatially uncorrelated common-spectrum
process. The means of each distribution are the noise-marginalized A

2ˆ given in
Table 3. The top panel also shows the posterior of an uncorrelated common red
process ACP

2 (dashed gray) from Figure 2 for comparison. All three cross-
correlation patterns are identified in the data with modest significance, but it is
only for an HD-correlated process that the amplitude estimate is compatible
with the posteriors of Figure 2.

Figure 5. Average angular distribution of cross-correlated power, as estimated
with the optimal statistic on the 11yr data set (top) and 12.5yr data set
(bottom). The number of pulsar pairs in each binned point is held constant for
each data set. Due to the increase in pulsars in the 12.5 yr data set, the number
of pairs per bin increases accordingly. Pulsar-intrinsic red-noise amplitudes are
set to their maximum posterior values from the Bayesian analysis, while the
SSE is fixed to DE438. The dashed blue and dotted orange lines show the
cross-correlated power predicted for HD and monopolar correlations with

amplitudes = ´ -A 4 102 30ˆ and 9×10−31, respectively.

Figure 6. Bayesian amplitude posteriors in a model that includes a common-
spectrum process and an off-diagonal HD-correlated process where all
autocorrelation terms are set to zero (see main text of Section 4.3). The
posteriors shown here are marginalized with respect to each other. The
inference run includes BAYESEPHEM.
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where dj and qj denote the data set and the intrinsic-noise
parameters for each pulsar j, and where ACP denotes the
amplitude of the common-spectrum process.

Equation (4) suggests a trivially parallel approach to
estimating the ACP posterior: we performed independent
inference runs for each pulsar, sampling timing-model para-
meters, pulsar-intrinsic white-noise parameters, pulsar-intrinsic
red-noise parameters, as well as ACP. We adopted DE438
(without corrections) as the SSE, and we set log-uniform priors
for all red-process amplitudes (as seen in Table 5). We then
obtained p A dj NCP( ∣{ } ) by multiplying the individual p A djCP( ∣ )
posteriors (as represented, e.g., by kernel density estimators),
while correcting for the duplication of the prior p ACP( ).

As shown in Figure 8, the resulting posterior matches the
analysis of Section 4, while sampling very low ACP values
more accurately. We can then evaluate the p pCP no CPall all( ) ( )
Bayes factor in the Savage–Dickey approximation (see
Dickey 1971), obtaining a value of ∼65,000, or a log10 Bayes
factor of ∼4.8, which is broadly consistent with the
transdimensional sampling estimates reported in Table 2. The
agreement of the two distributions in Figure 8 validates the

approximation of fixing pulsar-intrinsic white-noise hyperpara-
meters in the full-PTA analysis, which we accepted for the sake
of sampling efficiency.
In a dropout analysis (Aggarwal et al. 2019; S. Vigeland

et al. 2020, in preparation) we perform inference on the joint
PTA data set but introduce a binary indicator parameter for
each pulsar that can turn off the common-spectrum process
term in the likelihood of its data. These indicators are sampled
in Monte Carlo fashion with all other parameters. The dropout
factor (the number of “on” samples divided by “off” samples
for a pulsar) quantifies the support offered by each pulsar to the
common-signal hypothesis.
In this paper, we allow only a single pulsar to drop out at any

time in the exploration of the posterior. We performed such
dropout runs with fixed pulsar-intrinsic white-noise parameters
and fixed ephemeris DE438; the resulting dropout factors are
displayed by the blue dots of Figure 9, sorted by decreasing
value. Of the 45 pulsars used in this analysis, roughly 10 have
values significantly larger than 1 and (by implication)
contribute most of the evidence toward the recovered
common-spectrum process, 3 (notably PSR J1713+0747)
disfavor that hypothesis, and prefer to “drop out,” while the
rest remain agnostic.
The dropout factor for each pulsar k is linked to the posterior

predictive likelihood for the single-pulsar data set dk, integrated
over the ACP posterior from all other pulsars (Wang et al.
2019):

ò q

q q

=

´ ´¹

p d A

p A d p dA d
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. 5
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j k k k
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If the likelihood factorizes per Equation (4), then the dropout
factor is
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¹
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where p CPall ( ) and ¹p CPj k ( ) denote the Bayesian evidence for
the common-spectrum model from all pulsars together and
from all pulsars excluding k, respectively; and where
p no CPk ( ) is the evidence for the intrinsic-noise-only model
in the data from pulsar k.
The posterior predictive likelihood quantifies model support

by Bayesian cross-validation: namely, the ACP posterior obtained
from n−1 pulsars is used to compute the likelihood of the data
measured for the excluded pulsar, which acts as an out-of-
sample testing data set (Wang et al. 2019). In other words,
single-pulsar data sets with dropout factor larger than 1 can be
predicted successfully from the ACP posterior from all other
pulsars, lending credence to the common-spectrum process
model as a whole. Small dropout factors indicate problematic
single-pulsar data sets or deficiencies in the global model.
Equation (6) can be recast as

ò

=

´ ¹

p

p

p A d p A d

p A
A

dropout
CP

no CP

d , 7

k
k

k

j k kCP CP

CP
CP

( )
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( ∣{ }) ( ∣ )
( )

( )

which allows the numerical evaluation of dropout factors from
factorized likelihoods, where the Bayes factor can be computed
à la Savage–Dickey from the single-pulsar analysis of each

Figure 7. Bayesian reconstruction of interpulsar spatial correlations,
parameterized as a seven-node spline. Violin plots show marginalized
posteriors for node correlations, with medians, 5% and 95% percentiles, and
extreme values. The dashed blue line shows the HD ORF expected for a GWB,
while the dashed horizontal orange line shows the expected interpulsar
correlation signature for a monopole systematic error, e.g., drifts in clock
standards.

Figure 8. Marginalized ACP posterior of a common-spectrum process modeled
with a fixed γ=13/3 power law with five component frequencies and no
interpulsar correlations, as evaluated with full-PTA sampling and with the
factorized-likelihood approach of Section 5.1. We fixed the ephemeris to
DE438 (without corrections) and varied the white-noise hyperparameters for
the factorized likelihood, but not in the full-PTA run. Note the logarithmic
vertical scale, which emphasizes the very-low-density tail of the distribution;
full-PTA sampling has trouble accessing that region because low ACP requires
the fine-tuning of relatively high Ared in most pulsars.
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pulsar. The resulting dropoutk estimates are shown as the green
dots in Figure 9, and they agree closely with the direct dropout
estimates.

Unlike the factorized-likelihood approximation, the dropout
analysis remains possible when model parameters that correlate
the likelihoods are included, such as BAYESEPHEM correction
coefficients. Dropout factors for that case are shown as orange
dots in Figure 9, and they can still be interpreted as indicators
of the positive or negative evidence contributed by each pulsar
toward the common-spectrum process hypothesis. Introducing
BAYESEPHEM yields reduced factors for the first 10 pulsars,
consistent with the partial absorption of GW-like residuals into
ephemeris corrections (Vallisneri et al. 2020). Two of the
contrarian pulsars also revert to neutral factors, but PSR J1713
+0747 does not.

Altogether, the dropout analysis suggests that the strong
evidence for a common-spectrum process originates from more
than just a few outliers of NANOGrav pulsars. In Table 4, we
summarize the timing properties of the 10 pulsars with dropout
factors greater than 2. As expected, most of the evidence for the
common-spectrum process comes from pulsars with longer
observing baselines. We also note that of the 13 pulsars that
have been observed for more than 12 years, 6 have dropout
factors greater than 2, and only 1 has a dropout factor
significantly less than 1 (PSR J1713+0747). Data sets for three
pulsars remain somewhat inconsistent with the consensus. If
this trend continues as more data are collected, it will be
necessary to explain their behavior either as an expected
statistical fluctuation or as the result of pulsar-specific modeling
or measurement issues. Work is ongoing to develop advanced
noise models specific to each pulsar (J. Simon et al. 2020, in
preparation), which will provide a first quantitative assessment.

In the case of PSR J1713+0747, an unmodeled noise
process may indeed be to blame. A factorized-likelihood
analysis using the version of PSR J1713+0747 in the
NANOGrav 11yr data set (NG11) does show weak evidence
for the common process, with a dropout factor of 2.0, indicated
by a hollow green circle in Figure 9. This suggests that some
issue with the timing or noise model used to describe the
12.5yr version of PSR J1713+0747 is causing its anomalously
low dropout factor. This is likely due in some part to the
“second” chromatic timing event (Lam et al. 2018). An
extensive study of PSR J1713+0747ʼs noise propertyʼs

response to the “first” chromatic timing event showed that it
took a few years of additional data for the red-noise properties
of the pulsar to return to “normal” (Hazboun et al. 2020b). If
this is the primary cause of PSR J1713+0747ʼs behavior in the
12.5yr data set, then future data sets should show a return to
previously measured intrinsic red-noise values. In which case,
the pulsar would then contribute to any future detection claims.

5.2. Characterizing the Statistical Significance of Hellings–
Downs Correlations

Formally, it is the posterior odds ratio itself that relays the
dataʼs support for each model. What it does not tell you is how
often noise processes alone could manifest an odds ratio as
large as the data give. While arbitrary rules of thumb have been
developed to interpret odds ratios (e.g., Kass & Raftery 1995;
Jeffreys 1998), this interpretation is highly problem-specific.
However, most analysts would agree that ratios ∼1 are
inconclusive, while very large or small ratios point to a strong
preference for either model. In classical hypothesis testing, one
computes a detection statistic from the data suspected to
contain a signal, then compares the value of the statistic with its
background distribution, computed over a population of data

Figure 9. Characterizing the evidence from each pulsar in favor of a common-spectrum, no-correlations, stochastic process modeled as a γ=13/3 power law. Direct
dropout factors (see Equation (6)) from fixed pulsar-intrinsic white-noise fixed DE438 runs are shown as blue points; they match the estimates from variable white-
noise, fixed DE438 factorized likelihoods indicated by green points. The orange points show dropout factors when we include BAYESEPHEM corrections. Most of the
evidence arises from the 10 pulsars on the left, while PSRs J2010−1323, J1614−2230, and J1713+0747 remain skeptical. All of these effects are diminished by
BAYESEPHEM, except for PSR J1713+0747. However, a factorized-likelihood analysis using the 11 yr version of PSR J1713+0747 shows modest evidence for the
common process, as indicated by the hollow green point. This suggests that an unmodeled noise process in the 12.5yr version of PSR J1713+0747 is preventing the
pulsar from showing evidence for the common-spectrum process.

Table 4
Timing Properties of Pulsars with High Dropout Factors

Pulsar Dropout Factor Obs Time Timing rmsa

(DE438) (yr) (μs)

J1909−3744 17.6 12.7 0.061
J2317+1439 14.5 12.5 0.252
J2043+1711 6.0 6.0 0.151
J1600−3053 5.3 9.6 0.245
J1918−0612 3.4 12.7 0.299
J0613−0200 3.4 12.3 0.178
J1944+0907 3.3 9.3 0.365
J1744+1134 2.5 12.9 0.307
J1910+1256 2.4 8.3 0.187
J0030+0451 2.4 12.4 0.200

Notes. The 10 pulsars that show the strongest evidence for a common-spectrum
process include many pulsars with long observational baselines and low timing
rms, as expected.
a Weighted rms of epoch-averaged postfit timing residuals, excluding red-noise
contributions. See Table 3 of NG12.
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sets known to host no signal and thus representing the null
hypothesis. The percentile of the observed detection statistic
within the background distribution is known as the p value; it
quantifies how incompatible the data are with the null hypothesis
(but not the probability that the hypothesis of interest is true).

The problem for GW detectors is that it is not possible to
construct the background distribution by physically turning off
sensitivity to GWs. However, one can operate on the data. For
the coincident detection of transient GW signals with ground-
based observatories, the null model is realized by applying
relative time shifts to the time series of detection statistics from
multiple detectors, thus removing the very possibility of
coincidence. Similar techniques can be applied to the detection
of HD correlations in PTA data sets.

Several methods have been developed to perform a
frequentist study of the null hypothesis distribution in PTAs
(Cornish & Sampson 2016; Taylor et al. 2017a); the relevant
null hypothesis is that of a red process with identical spectral
properties in all pulsars, but without any GW-induced
interpulsar correlations (our so-called common red process).
By performing repeated trials of spatial-correlation template
scrambles (“sky scrambles”) and Fourier basis phase offsets
(“phase shifts”), we can effectively null any spatial correlations
in the true data set and construct a distribution of our detection
statistic (whether frequentist S/N or Bayesian odds ratio) under
the null hypothesis. It is with these null distributions that we
obtain the p value of our measured statistic.

In a phase-shift analysis, random phase shifts are inserted in
the Fourier basis components that describe the GWB process in
each pulsar, thus breaking any interpulsar correlations that may
be present in the data (Taylor et al. 2017a). Detection statistics
are then computed using both frequentist (i.e., the noise-
marginalized mean-S/N optimal statistic) and Bayesian (i.e.,
the Bayes factor for an HD-correlated model versus a common-
spectrum but spatially uncorrelated model) analyses from 1000
and 300 realizations (respectively) of the phase shifts. The
resulting distributions are shown in Figures 10 and 11. The p
values (in this case, the fraction of background samples with
statistic higher than observed for the undisturbed model) are
0.091 and 0.013.
In a sky-scramble analysis, the positions of the pulsars used

to compute the expected HD correlations are randomized
(Cornish & Sampson 2016; Taylor et al. 2017a), under the
requirement that the scrambled ORFs have minimal similarity
to the true function.48 Again, we compute both frequentist and
Bayesian HD detection statistics over large sets of realizations:
the resulting background distributions are shown in Figures 10

Table 5
Prior Distributions Used in All Analyses Performed in This Paper

Parameter Description Prior Comments

White Noise
Ek EFAC per backend/receiver system Uniform [0, 10] single-pulsar analysis only
Qk (s) EQUAD per backend/receiver system log-uniform [−8.5, −5] single-pulsar analysis only
Jk (s) ECORR per backend/receiver system log-uniform [−8.5, −5] single-pulsar analysis only

Red Noise
Ared log-Uniform [−20, −11] one parameter per pulsar
γred red-noise power-law spectral index Uniform [0, 7] one parameter per pulsar

Common Process, Free Spectrum
ρi (s

2) power-spectrum coefficients at f=i/T uniform in ri
1 2 - -10 , 10 a18 8[ ] one parameter per frequency

Common Process, Broken-power-law Spectrum
ACP broken power-law amplitude log-uniform [−18, −14] (g = 13 3CP ) one parameter for PTA

log-uniform [−18, −11] (γCP varied) one parameter for PTA
gCP broken-power-law low-freq. spectral index delta function (γcommon=13/3) fixed

uniform [0,7] one parameter per PTA
δ broken-power-law high-freq. spectral index delta function (δ=0) fixed
fbend (Hz) broken-power-law bend frequency log-uniform [−8.7,−7] one parameter for PTA

Common Process, Power-law Spectrum
ACP common-process strain amplitude log-uniform [−18, −14] (γCP=13/3) one parameter for PTA

log-uniform [−18, −11](γCP varied) one parameter for PTA
gCP common-process power-law spectral index delta function (γCP=13/3) fixed

uniform [0,7] one parameter for PTA

BAYESEPHEM

zdrift (rad yr−1) drift rate of Earthʼs orbit about the ecliptic z-axis uniform [−10−9, 10−9] one parameter for PTA
DMjupiter (Me) perturbation to Jupiterʼs mass ´ - 0, 1.55 10 11( ) one parameter for PTA

DMsaturn (Me) perturbation to Saturnʼs mass ´ - 0, 8.17 10 12( ) one parameter for PTA
DMuranus (Me) perturbation to Uranus’ mass ´ - 0, 5.72 10 11( ) one parameter for PTA
DMneptune (Me) perturbation to Neptuneʼs mass ´ - 0, 7.96 10 11( ) one parameter for PTA

PCAi ith PCA component of Jupiterʼs orbit uniform [−0.05, 0.05] six parameters for PTA

48 Specifically, we measure the match statistic M̄ between the ORFs Γab and
G¢ab (Taylor et al. 2017a):

å

å å
=
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G G G¢ G¢

¹

¹ ¹
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where a and b index the array pulsars and require that <M 0.1¯ .
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and 11. The optimal-statistic p value agrees closely with its
phase-shift counterpart; the Bayes factor p value is higher, but
the small-number error is likely to be significant.

All of these p values hover around 5%, which is much higher
than the 3σ (“evidence”) and 5σ (“discovery”) standards of
particle physics, corresponding to p=0.001 and 3×10−7,
respectively. Nevertheless, progressively smaller p values for
future data sets would indicate that compelling evidence is
accumulating.

6. Discussion

As reported in Section 4.1, the ACP posterior has significant
support above the upper limits reported in our GWB searches
in the 11yr and 9yr data sets (NG9gwb; NG11gwb); in fact,
almost the entire posterior sits above the most stringent upper
limit in the literature ( < ´ -A 1 10GWB

15; Shannon et al.
2015). Without a reanalysis of the data presented in Shannon
et al. (2015), which is beyond the scope of this work, we cannot
fully explain the discrepancy between the results presented in
this paper and the upper limit quoted in Shannon et al. (2015).
A revised analysis of the PPTA data is planned as a part of an
upcoming IPTA publication using the DR2 combined data set
(Perera et al. 2019); preliminary results show broad consistency
with this work. However, we note that the Shannon et al.
constraint relies on four pulsars, whereas at least 10 pulsars in

the NG12 data support a common-spectrum process (see
Figure 9); furthermore, the Shannon et al. analysis adopts the
DE421 SSE, which, even with NANOGrav data, yields a lower
upper limit than later SSEs (Arzoumanian et al. 2018a;
Vallisneri et al. 2020).
In Section 6.1, we discuss in detail the discrepancy between

the published NG11gwb results and those reported in this paper
and find an explanation in the choice of Bayesian prior for the
amplitude Ared of pulsar-intrinsic red-noise processes (Hazboun
et al. 2020a). While we focus our discussion solely on
NANOGravʼs previous GWB analyses, we expect the conclu-
sions to apply broadly to all pulsar-timing data sets and
analyses. While the GWB attribution of the common-spectrum
process remains inconclusive, in Section 6.2 we consider the
broad astrophysical implications of a GWB at the levels
encompassed by the ACP posterior. In Section 6.3, we describe
the next steps for NANOGrav GWB searches as well as our
expectations for the growth of spatial correlations in future
data sets.

6.1. Comparison of 11yr and 12.5yr Results

We recognize that the common-spectrum amplitude esti-
mated from the 12.5yr data set (1.4–2.7×10−15) may seem
surprising when compared to the Bayesian upper limits quoted
from analyses of earlier data (1.45×10−15 in NG11gwb and
1.5×10−15 in NG9gwb). First, we note that applying the
fiducial analysis of this paper (common-spectrum uncorrelated
process under DE438) to the 11 yr data set results in ACP–γCP
posteriors that are entirely consistent with those reported here,
as shown in Figure 12.
The remaining dissonance between the earlier upper limits

and the findings of this paper is explained by examining the
structure of our analysis. The strength of the Bayesian approach
to PTA searches is that it allows for simultaneous modeling of
multiple time-correlated processes present in the data. Within
the construction of our analysis, amplitude estimates for one
such process are sensitive to the priors assumed for the others,
especially when the process of interest is still below the
threshold of positive detection.
Looking at the 11yr upper limit specifically (which was

quoted as 1.34×10−15 for a spatially uncorrelated common-
spectrum process in NG11gwb), we note that introducing
BAYESEPHEM corrections with unconstrained priors on Jupi-
terʼs orbital perturbation parameters would have necessarily

Figure 10. Distribution of the noise-marginalized optimal-statistic mean S/N
for 1000 phase shifts (blue curve) and 1000 sky scrambles (orange curve). The
vertical green line marks the mean S/N measured in the unperturbed model.
Higher mean values of the S/N are obtained in 91 phase shifts (p=0.091) and
82 sky scrambles (p=0.082).

Figure 11. Distribution of the correlated vs. uncorrelated common-process
Bayes factor for 300 phase shifts (blue curve) and 300 sky scrambles (orange
curve). The vertical green line marks the Bayes factor computed in the
unperturbed model. Higher Bayes ratios are obtained in 4 phase shifts
(p=0.013) and 13 sky scrambles (p=0.043). The small numbers indicated
that statistical error may be large in the p-value estimates.

Figure 12. Common-spectrum process parameter posteriors for the NG12
(dashed curves) and NG11gwb (solid) data sets, as estimated with a five-
frequency power-law model under DE438. For each data set, the two curves
trace 1σ and 2σ contours, which appear entirely consistent. The dashed vertical
line marks γ=13/3, as expected for GWB from SMBHBs.
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absorbed power from a common-spectrum process, if such a
process was present. Correspondingly, the 11yr upper limit
rises to 1.94×10−15 if we take DE438 as the fiducial SSE,
without corrections (Vallisneri et al. 2020).

Even more important, the Bayesian upper limits in NG9gwb
and NG11gwb were computed by placing a uniform prior on
the amplitude of pulsar-intrinsic red noise, which amounts to
assuming that loud intrinsic noise is typical among PTA
pulsars, rather than the exception, as suggested by the estimates
in this paper. Doing so is conservative with respect to detecting
a GWB, but it has the effect of depressing upper limits. As
discussed in Hazboun et al. (2020a), simulations show that
injecting a common-spectrum stochastic signal in synthetic
data sets leads to 95% upper limits lower than AGWB

inj in 50% of
data realizations, if the intrinsic red noise is given a uniform
amplitude prior.

Reweighting the 11yr upper limit with a log-uniform prior
on intrinsic-noise amplitudes yields 2.4×10−15 under DE438
and 2.1×10−15 with BAYESEPHEM. Both values are more
consistent with the findings of this paper. The differences in
data reduction and in the treatment of white noise between
11yr and 12.5yr data sets (discussed in Section 2.3) seem to
account for the remaining distance, but those differences are
very challenging to evaluate formally, so we do not address
them further here.

Altogether, this discussion suggests that past Bayesian upper
limits from PTAs may have been overinterpreted in astro-
physical terms. Those limits were indeed correct within the
Bayesian logic, but they were necessarily affected by our
uncertain assumptions. If future data sets bring about a
confident GWB detection, our astrophysical conclusions will
finally rest on a much stronger basis.

6.2. Astrophysical Implications

The first hint of a signal from our analysis of NG12 is indeed
tantalizing. However, without definite evidence for HD
correlations in the recovered common-spectrum process, there
is little we can say about the physical origin of this signal.
Models that give rise to a GWB in the nanohertz frequency
range (∼1–100 nHz) through either primordial GWs from
inflation (Grishchuk 1975; Lasky et al. 2016), bursts from
networks of cosmic strings (Siemens et al. 2007; Blanco-
Pillado et al. 2018), or the mergers of SMBHBs (Rajagopal &
Romani 1995; Phinney 2001; Jaffe & Backer 2003; Wyithe &
Loeb 2003) have been proposed. Black hole mergers are likely
the most-studied source, though what fraction (if any) of galaxy
mergers is able to produce coalescing SMBHBs is virtually
unconstrained. If the common-spectrum process is due to
SMBHBs, it would be the first definitive demonstration that
SMBHBs are able to form, reach subparsec separations, and
eventually coalesce due to GW emission.

While the recovered amplitude for the common-spectrum
process in this data set is larger than the upper limit on a
stochastic GWB quoted in NG11gwb, the qualitative astro-
physical conclusions reported there apply to this data set as
well (see Section 5 of NG11gwb). We note also that the
amplitude posteriors found here can accommodate many GWB
models and assumptions (such as the Kormendy & Ho
measurement of the MBH–Mbulge relationship) that had
previously been in tension with PTA upper limits.

The cosmic history of SMBHB mergers is encoded in the
shape and amplitude of the GWB strain spectrum they produce

(Sesana 2013; McWilliams et al. 2014; Ravi et al. 2014;
Sampson et al. 2015; Middleton et al. 2016; Chen et al.
2017, 2019; Kelley et al. 2017; Taylor et al. 2017b;
Mingarelli 2019). At the lower end of the nanohertz band,
signs of the binary-hardening mechanism may still be present,
and we refer the reader to Section 5 of NG11gwb and
references therein for further details. The overall amplitude of
the GWB spectrum is determined not only by the number of
binaries able to reach the relevant orbital frequencies, but also
their distribution of masses (Simon & Burke-Spolaor 2016).
The GWB amplitude is relatively insensitive to the redshift
distribution of sources (Phinney 2001) except at the highest
frequencies, which are affected even more by the local number
density and eccentricity distribution of sources (Sesana 2013;
Kelley et al. 2017). Additionally, the amplitude recovered in
this paper, if assumed to be primarily due to a GWB, may
imply that the black hole mass function is underestimated,
specifically when extrapolated from observations of the local
supermassive black hole population (Zhu et al. 2019).
Last, beyond the marginal evidence for HD correlations, we

find a broad posterior for the spectral slope γ of the common-
spectrum process when we allow γ to vary. Therefore, the
emerging signal could also be attributed to one of the other
cosmological sources capable of producing a nanohertz GWB.
The predicted spectral index for these is only slightly different
from the SMBHB value of 13/3 (≈4.33): it is 5 for a
primordial GWB(Grishchuk 2005) and 16/3 (≈5.33) for
cosmic strings (Ölmez et al. 2010). Data sets with longer time
spans and more pulsars will allow for precise parameter
estimation in addition to providing confidence toward or
against GWB detection.

6.3. Expectations for the Future

The analysis of NANOGrav pulsar-timing data presented in
this paper is the first PTA search to show definite evidence for a
common-spectrum stochastic signal across an array of pulsars.
However, evidence for the tell-tale quadrupolar HD correla-
tions is currently lacking, and there are other potential
contributors to a common-spectrum process. A majority of
the pulsars with long observational baselines show the
strongest evidence for a common-spectrum process; this subset
of pulsars could be starting to show similar spin noise with a
consistent spectral index. However, it is unlikely that strong
spin noise would appear at a similar amplitude in all MSPs
(Lam et al. 2017). Additionally, the per-pulsar evidence is
significantly reduced when we apply BAYESEPHEM, as
expected; there remain other solar system effects for which
we do not directly account, such as planetary Shapiro delay
(Hobbs & Edwards 2012), that could contribute to the
common-spectrum process. Finally, there are other sources of
systematic noise that we may have uncovered (Tiburzi et al.
2016) and further potential for sources yet to be diagnosed, all
of which would require further study to isolate. Thus,
attributing the signal uncovered in this work to an astrophysical
GWB will necessitate verification with independent pipelines
on larger (and/or independent) data sets.
One avenue to validate the processing of timing observations

will be the analysis of the “wideband” version of NANOGravʼs
12.5yr data set, which is produced by a significantly different
reduction pipeline (Alam et al. 2021b). A preliminary analysis
of wideband data using the techniques of this paper shows
results consistent with those detailed here. Additionally, our
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treatment and understanding of pulsar-intrinsic noise will be
enhanced soon with the adoption of advanced noise models
tailored to each pulsar (J. Simon et al. 2020, in preparation),
which include more powerful descriptions of dispersion-
measure oscillations among other enhancements.

In the medium term, NANOGrav is compiling its next data
set, which adds multiple years of observations and many new
pulsars to NG12, some of which will have baselines long
enough to be incorporated in GW searches. If we assume
optimistically that the common-spectrum signal identified here
is indeed astrophysical, the optimal-statistic S/N should then
grow by a factor of a few (Pol et al. 2020).

Finally, data from the other PTA collaborations will play an
important role: the second IPTA data release (Perera et al.
2019) includes the 9yr NANOGrav data set alongside EPTA
and PPTA timing observations. The analysis of this joint data
set is ongoing, and early results are again consistent with those
discussed here. Thus, future data sets will be strong arbiters of
the astrophysical interpretation of our findings.

NANOGravʼs pursuit of a stochastic GWB detection has
hardly been linear. In NG11gwb, we reanalyzed the 9yr data
set using BAYESEPHEM and updated the results reported
in NG9gwb to reflect our new understanding of ephemeris
errors. In this work, we reweighted the 11yr analysis to
account for the emerging physical picture of PTA data quality.
While we cannot foresee how we will revise this 12.5yr
analysis in light of the 15yr data set, the ouroboric nature of
hierarchical Bayesian inference will undoubtedly require some
refinements. The LIGO–Virgo discovery of high-frequency,
transient GWs from stellar black hole binaries appeared
meteorically, with incontrovertible statistical significance. By
contrast, the PTA discovery of very-low-frequency GWs from
SMBHBs will emerge from the gradual and not always
monotonic accumulation of evidence and arguments. Still,
our GW vista on the unseen universe continues to get brighter.
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Appendix A
Injection Analysis of the NANOGrav 11yr Data Set

To test the response of our real data sets to the presence of a
stochastic GWB, we inject a range of GWB amplitudes directly
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into the 11yr data set (NG11). We use the 11yr data set rather
than the current 12.5yr data set because it does not contain any
significant common-spectrum processes and so the GWB
injection is able to be cleanly recovered. While retaining the
TOAs and their corresponding errors from NG11, we inject a
stochastic GWB (Chamberlin et al. 2015) using functionality in
the LIBSTEMPO software package. Using a power-law model
with a spectral index of α=−2/3 (i.e., γ=13/3), we create
10 data set realizations for each characteristic strain amplitude
in the range ´- - A10 5 1016

GWB
15. We analyze all

realizations with our full detection pipeline. While the complete
results of this analysis will be reported in an upcoming
publication, here we concentrate on the spectral response
of NG11 to the presence of the stochastic GWB.

As stated in Section 3.1, we calculate the power in each
frequency bin using the free-spectrum model (see Section 3.2)
without including HD correlations or BAYESEPHEM. In
Figure 14, we show the ratio of power recovered by each
frequency bin between an injection of A=5×10−15 and
A=1×10−16. As we can see, the lowest four frequency bins
are the most responsive to the presence of a power law GWB in
the data set.

We also examine the evolution of the power in each
frequency bin as a function of the injected amplitude. Figure 13
shows the evolution of the power in each frequency bin, which
is scaled to the power in that bin at an injected amplitude of
A=10−16. Due to its power-law nature, the GWB affects the
lowest frequency bin at amplitudes much smaller than that for
the higher-frequency bins. We see again that the lowest four
frequency bins are the ones that are most reactive to the
presence of a GWB in the data set. This result provides further
confirmation that using the five lowest frequencies is sufficient
to recover a GWB in the 12.5yr data set (Section 3.1).

Appendix B
Bayesian Methods

We used Markov Chain Monte Carlo (MCMC) methods to
stochastically sample the joint posterior of our model parameter
spaces and use Monte Carlo integration to deduce marginalized
distributions, where ò q q q q» á ñf p d d f i( ) ( ∣ ) ( ) for the integral
of an arbitrary function qf ( ) over the posterior qp d( ∣ ) of which
the samples {θi} are randomly drawn. Where necessary, we
estimated the uncertainty on the marginalized posterior value to
be the Monte Carlo sampling error of the location qx

ˆ of the xth
quantile:

q q

-

=

x x N

p d

1
, B1

x

( )
( ˆ ∣ )

( )

where N is the number of (quasi-)independent samples in our
MCMC chain (Wilcox 2012).
As described in NG11gwb, we employ two techniques for

model selection based on the relationship between the
competing models. For nested models that compare the
additional presence of a signal to that of noise alone, we used
the Savage–Dickey approximation (Dickey 1971). This
requires adequate sampling coverage of low-amplitude poster-
ior regions in order to compute the Savage–Dickey density
ratio, which corresponds to the prior to posterior density at zero
amplitude: Bayes factor = = =p A p A d0 0( ) ( ∣ ). In practice,
this means that the method is only useful for moderate model
odds contrasts, and while this was used extensively
in NG11gwb, the strength of the recovered signal in this paper
exceeds the reliability of the Savage–Dickey approximation
without additional sampling strategies to explore the low-
amplitude posterior region. For disjoint models, models that are
not easily distinguished parametrically, and indeed all model
selection in this paper, we used the product-space method
(Carlin & Chib 1995; Godsill 2001; Hee et al. 2015; Taylor
et al. 2020). This recasts model selection as a parameter
estimation problem, introducing a model-indexing variable that
is sampled along with the parameters of the competing models
and which controls which model likelihood is active at each
MCMC iteration. The ratio of samples spent in each bin of the
model-indexing variable returns the posterior odds ratio
between models. The efficiency of model transitions is
controlled by our prior model probabilities, which we usually
set to be equal. However, one can improve the odds ratio
computation by performing a pilot run, whose odds ratio
estimate can be used to reweight the models in a follow-up run.
This will ensure more equitable chain visitation to each model,
after which the model index posterior is reweighted back to the
true model contrast.

Figure 13. Response of each frequency from a common free-spectrum model
to the presence of an injected GWB into the 11yr data set (NG11) as a function
of the injected GWB amplitude. The x-axis shows the injected GWB
amplitude, while the y-axis shows the mean ratio across four realizations of
the GWB of the average power in each frequency bin scaled to the mean power
in that bin at an injected amplitude of A=10−16. The lowest frequency bin
responds to the GWB at much smaller injected amplitudes than the other bins,
while the lowest four frequency bins have the strongest response to the
presence of the injected GWB at larger amplitudes.

Figure 14. Response of a common free-spectrum modelʼs red-noise Fourier-
domain components to a GWB injected in the 11yr data set (NG11). We plot
the component frequency along the horizontal axis and the ratios of the mean
estimated component power between injection amplitudes = ´ -A 5 10CP

15

and ACP=10−16 along the vertical. Clearly, the response to an increasing
GWB amplitude is limited to the first few bins. See Appendix A for more
details.
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Appendix C
Software

We used the software packages enterprise (Ellis et al.
2019) and enterprise_extensions (Taylor et al. 2018)
to perform the Bayesian and frequentist searches. These
packages implement the signal models, likelihood, and priors.
Our Bayesian priors for all parameters are described in Table 5.
We used the software package PTMCMCSampler (Ellis & van
Haasteren 2017) to perform the MCMC for the Bayesian
searches. We primarily used adaptive Metropolis and differ-
ential evolution jump proposals. For some analyses, we used
draws from empirical distributions to sample the pulsars’ red-
noise parameters, with the empirical distributions constructed
from posteriors obtained from previous Bayesian analyses.
These draws significantly decreased the number of samples
needed for the pulsars’ red-noise parameters to burn in. This
technique was first used to analyze the 11yr data set for GWs
from individual SMBHBs, and a detailed description can be
found in AppendixB of Aggarwal et al. (2019).
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