
Big collaborations like ATLAS, LZ and DUNE spend a lot of
computational resources on

• event generation,

• event reconstruction, and

• analysis,

with the goal of obtaining the best possible results. A lot of these
techniques rely on machine learning algorithms.

How can we be sure that these algorithms are performing
optimally and efficiently?

1

Mutual Information and its Application to Machine Learning
in HEP1−6

Nicholas Carrara†

Ph.D. Candidate

University at Albany

† N. Carrara (Thesis) “The Foundations of Inference and its Application to Fundamental Physics” (2021)

1 N. Carrara and K. Vanslette, “The Design of Global Correlation Quantifiers and Continuous Notions of Statistical Sufficiency”, Entropy

2020, 22(3), 357

2 N. Carrara and J. Ernst, “On the Upper Limit of Separability”, arXiv:1708.09449

3 N. Carrara and J. Ernst, “On the Estimation of Mutual Information”, arXiv:1910.00365

4 The LUX Collaboration, “Combining Machine Learning and Profile Likelihood Methods on the LUX Experiment”, In preparation

5 N. Carrara and J. Ernst, “The Upper-Limit of Separability”, In preparation

6 N. Carrara and J. Ernst, “The MIST Algorithm”, In preparation

2

How is mutual information useful for HEP?

Mutual information is an information theoretic quantity (a relative entropy) which

measures the amount of correlations1 between two sets of variables X and Y ,

I [X ;Y] =

∫
dxdy p(x , y) log

p(x , y)

p(x)p(y)
. (1)

It defines an upper-limit of separability2 which allows one to know:

1. when to stop training any ML algorithm,

2. when variables are redundant or useless3,

3. which variables from a given set are the best to use4,5,

4. quantifies systematic uncertainties in models1,

5. and more...

1 N. Carrara and K. Vanslette, “The Design of Global Correlation Quantifiers and Continuous Notions of Statistical Sufficiency”, Entropy

2020, 22(3), 357

2 N. Carrara and J. Ernst, “On the Upper Limit of Separability”, arXiv:1708.09449

3 N. Carrara and J. Ernst, “On the Estimation of Mutual Information”, arXiv:1910.00365

5 N. Carrara and J. Ernst, “The Upper-Limit of Separability”, In preparation

6 N. Carrara and J. Ernst, “The MIST Algorithm”, In preparation

3

How is mutual information useful for HEP?

Mutual information is an information theoretic quantity (a relative entropy) which

measures the amount of correlations1 between two sets of variables X and Y ,

I [X ;Y] =

∫
dxdy p(x , y) log

p(x , y)

p(x)p(y)
. (1)

It defines an upper-limit of separability2 which allows one to know:

1. when to stop training any ML algorithm,

2. when variables are redundant or useless3,

3. which variables from a given set are the best to use4,5,

4. quantifies systematic uncertainties in models1,

5. and more...

1 N. Carrara and K. Vanslette, “The Design of Global Correlation Quantifiers and Continuous Notions of Statistical Sufficiency”, Entropy

2020, 22(3), 357

2 N. Carrara and J. Ernst, “On the Upper Limit of Separability”, arXiv:1708.09449

3 N. Carrara and J. Ernst, “On the Estimation of Mutual Information”, arXiv:1910.00365

5 N. Carrara and J. Ernst, “The Upper-Limit of Separability”, In preparation

6 N. Carrara and J. Ernst, “The MIST Algorithm”, In preparation

3

How is mutual information useful for HEP?

Mutual information is an information theoretic quantity (a relative entropy) which

measures the amount of correlations1 between two sets of variables X and Y ,

I [X ;Y] =

∫
dxdy p(x , y) log

p(x , y)

p(x)p(y)
. (1)

It defines an upper-limit of separability2 which allows one to know:

1. when to stop training any ML algorithm,

2. when variables are redundant or useless3,

3. which variables from a given set are the best to use4,5,

4. quantifies systematic uncertainties in models1,

5. and more...

1 N. Carrara and K. Vanslette, “The Design of Global Correlation Quantifiers and Continuous Notions of Statistical Sufficiency”, Entropy

2020, 22(3), 357

2 N. Carrara and J. Ernst, “On the Upper Limit of Separability”, arXiv:1708.09449

3 N. Carrara and J. Ernst, “On the Estimation of Mutual Information”, arXiv:1910.00365

5 N. Carrara and J. Ernst, “The Upper-Limit of Separability”, In preparation

6 N. Carrara and J. Ernst, “The MIST Algorithm”, In preparation

3

How is mutual information useful for HEP?

Mutual information is an information theoretic quantity (a relative entropy) which

measures the amount of correlations1 between two sets of variables X and Y ,

I [X ;Y] =

∫
dxdy p(x , y) log

p(x , y)

p(x)p(y)
. (1)

It defines an upper-limit of separability2 which allows one to know:

1. when to stop training any ML algorithm,

2. when variables are redundant or useless3,

3. which variables from a given set are the best to use4,5,

4. quantifies systematic uncertainties in models1,

5. and more...

1 N. Carrara and K. Vanslette, “The Design of Global Correlation Quantifiers and Continuous Notions of Statistical Sufficiency”, Entropy

2020, 22(3), 357

2 N. Carrara and J. Ernst, “On the Upper Limit of Separability”, arXiv:1708.09449

3 N. Carrara and J. Ernst, “On the Estimation of Mutual Information”, arXiv:1910.00365

5 N. Carrara and J. Ernst, “The Upper-Limit of Separability”, In preparation

6 N. Carrara and J. Ernst, “The MIST Algorithm”, In preparation

3

How is mutual information useful for HEP?

Mutual information is an information theoretic quantity (a relative entropy) which

measures the amount of correlations1 between two sets of variables X and Y ,

I [X ;Y] =

∫
dxdy p(x , y) log

p(x , y)

p(x)p(y)
. (1)

It defines an upper-limit of separability2 which allows one to know:

1. when to stop training any ML algorithm,

2. when variables are redundant or useless3,

3. which variables from a given set are the best to use4,5,

4. quantifies systematic uncertainties in models1,

5. and more...

1 N. Carrara and K. Vanslette, “The Design of Global Correlation Quantifiers and Continuous Notions of Statistical Sufficiency”, Entropy

2020, 22(3), 357

2 N. Carrara and J. Ernst, “On the Upper Limit of Separability”, arXiv:1708.09449

3 N. Carrara and J. Ernst, “On the Estimation of Mutual Information”, arXiv:1910.00365

5 N. Carrara and J. Ernst, “The Upper-Limit of Separability”, In preparation

6 N. Carrara and J. Ernst, “The MIST Algorithm”, In preparation

3

How is mutual information useful for HEP?

Mutual information is an information theoretic quantity (a relative entropy) which

measures the amount of correlations1 between two sets of variables X and Y ,

I [X ;Y] =

∫
dxdy p(x , y) log

p(x , y)

p(x)p(y)
. (1)

It defines an upper-limit of separability2 which allows one to know:

1. when to stop training any ML algorithm,

2. when variables are redundant or useless3,

3. which variables from a given set are the best to use4,5,

4. quantifies systematic uncertainties in models1,

5. and more...

1 N. Carrara and K. Vanslette, “The Design of Global Correlation Quantifiers and Continuous Notions of Statistical Sufficiency”, Entropy

2020, 22(3), 357

2 N. Carrara and J. Ernst, “On the Upper Limit of Separability”, arXiv:1708.09449

3 N. Carrara and J. Ernst, “On the Estimation of Mutual Information”, arXiv:1910.00365

5 N. Carrara and J. Ernst, “The Upper-Limit of Separability”, In preparation

6 N. Carrara and J. Ernst, “The MIST Algorithm”, In preparation

3

How is mutual information useful for HEP?

Mutual information is an information theoretic quantity (a relative entropy) which

measures the amount of correlations1 between two sets of variables X and Y ,

I [X ;Y] =

∫
dxdy p(x , y) log

p(x , y)

p(x)p(y)
. (1)

It defines an upper-limit of separability2 which allows one to know:

1. when to stop training any ML algorithm,

2. when variables are redundant or useless3,

3. which variables from a given set are the best to use4,5,

4. quantifies systematic uncertainties in models1,

5. and more...

1 N. Carrara and K. Vanslette, “The Design of Global Correlation Quantifiers and Continuous Notions of Statistical Sufficiency”, Entropy

2020, 22(3), 357

2 N. Carrara and J. Ernst, “On the Upper Limit of Separability”, arXiv:1708.09449

3 N. Carrara and J. Ernst, “On the Estimation of Mutual Information”, arXiv:1910.00365

5 N. Carrara and J. Ernst, “The Upper-Limit of Separability”, In preparation

6 N. Carrara and J. Ernst, “The MIST Algorithm”, In preparation

3

The Upper-Limit of Separability

One of the prevailing challenges in generic machine learning tasks is to know when to

stop training. Standard techniques only provide heuristics for when to stop.

• This model is clearly stuck in a

local minimum between epochs

10-60.

• How can we be sure that it’s not

in a local minimum at epoch 100?

Our method, developed in “On the Upper Limit of Separability”,

1. provides an absolute target (the mutual information) for when to stop training

any algorithm, and

2. is quickly computable from data7,8.

7 A. Kraskov, H. Stögbauer, and P. Grassberger, Estimating Mutual Information, Phys. Rev. E 69, 2004

8 G. ver Steeg, The Non-parametric Entropy Estimation Toolbox, https://github.com/gregversteeg/NPEET

4

https://github.com/gregversteeg/NPEET

The Upper-Limit of Separability

One of the prevailing challenges in generic machine learning tasks is to know when to

stop training. Standard techniques only provide heuristics for when to stop.

• This model is clearly stuck in a

local minimum between epochs

10-60.

• How can we be sure that it’s not

in a local minimum at epoch 100?

Our method, developed in “On the Upper Limit of Separability”,

1. provides an absolute target (the mutual information) for when to stop training

any algorithm, and

2. is quickly computable from data7,8.

7 A. Kraskov, H. Stögbauer, and P. Grassberger, Estimating Mutual Information, Phys. Rev. E 69, 2004

8 G. ver Steeg, The Non-parametric Entropy Estimation Toolbox, https://github.com/gregversteeg/NPEET 4

https://github.com/gregversteeg/NPEET

Redundancy in HEP searches

The upper-limit is able to recognize the existence of redundant information.

In HEP9 searches/event

reconstructions you have

• some low-level kinematic

variables Xlow,

(jet momenta, pseudo-rapidity,

scintillation/ionization counts,etc.)

• as well as high-level variables,

Xhigh = f (Xlow) (2)

which can be outputs of,

1. a ML algorithm10,

2. an event reconstruction

algorithm,

(invariant masses, pulse shape

variables, etc.)

3. etc.

The upper-limit guarantees that,

I [(Xlow,Xhigh); θ] = I [Xlow; θ].

(3)

Figure 1: MI vs. number of variables for the input variables X

(predicted) and the output of the trained model f (X) (acheived).

9 The SUSY Dataset, UCI Machine learning repository, https://archive.ics.uci.edu/ml/datasets/SUSY

10 Komiski et al., “Energy Flow Networks: Deep Sets for Particle Jets”, https://arxiv.org/abs/1810.05165

5

https://archive.ics.uci.edu/ml/datasets/SUSY
https://arxiv.org/abs/1810.05165

Redundancy in HEP searches

The upper-limit is able to recognize the existence of redundant information.
In HEP9 searches/event

reconstructions you have

• some low-level kinematic

variables Xlow,

(jet momenta, pseudo-rapidity,

scintillation/ionization counts,etc.)

• as well as high-level variables,

Xhigh = f (Xlow) (2)

which can be outputs of,

1. a ML algorithm10,

2. an event reconstruction

algorithm,

(invariant masses, pulse shape

variables, etc.)

3. etc.

The upper-limit guarantees that,

I [(Xlow,Xhigh); θ] = I [Xlow; θ].

(3)

Figure 1: MI vs. number of variables for the input variables X

(predicted) and the output of the trained model f (X) (acheived).

9 The SUSY Dataset, UCI Machine learning repository, https://archive.ics.uci.edu/ml/datasets/SUSY

10 Komiski et al., “Energy Flow Networks: Deep Sets for Particle Jets”, https://arxiv.org/abs/1810.05165

5

https://archive.ics.uci.edu/ml/datasets/SUSY
https://arxiv.org/abs/1810.05165

Redundancy in HEP searches

The upper-limit is able to recognize the existence of redundant information.
In HEP9 searches/event

reconstructions you have

• some low-level kinematic

variables Xlow,

(jet momenta, pseudo-rapidity,

scintillation/ionization counts,etc.)

• as well as high-level variables,

Xhigh = f (Xlow) (2)

which can be outputs of,

1. a ML algorithm10,

2. an event reconstruction

algorithm,

(invariant masses, pulse shape

variables, etc.)

3. etc.

The upper-limit guarantees that,

I [(Xlow,Xhigh); θ] = I [Xlow; θ].

(3)

Figure 1: MI vs. number of variables for the input variables X

(predicted) and the output of the trained model f (X) (acheived).

9 The SUSY Dataset, UCI Machine learning repository, https://archive.ics.uci.edu/ml/datasets/SUSY

10 Komiski et al., “Energy Flow Networks: Deep Sets for Particle Jets”, https://arxiv.org/abs/1810.05165

5

https://archive.ics.uci.edu/ml/datasets/SUSY
https://arxiv.org/abs/1810.05165

Redundancy in HEP searches

The upper-limit is able to recognize the existence of redundant information.
In HEP9 searches/event

reconstructions you have

• some low-level kinematic

variables Xlow,

(jet momenta, pseudo-rapidity,

scintillation/ionization counts,etc.)

• as well as high-level variables,

Xhigh = f (Xlow) (2)

which can be outputs of,

1. a ML algorithm10,

2. an event reconstruction

algorithm,

(invariant masses, pulse shape

variables, etc.)

3. etc.

The upper-limit guarantees that,

I [(Xlow,Xhigh); θ] = I [Xlow; θ].

(3)

Figure 1: MI vs. number of variables for the input variables X

(predicted) and the output of the trained model f (X) (acheived).

9 The SUSY Dataset, UCI Machine learning repository, https://archive.ics.uci.edu/ml/datasets/SUSY

10 Komiski et al., “Energy Flow Networks: Deep Sets for Particle Jets”, https://arxiv.org/abs/1810.05165

5

https://archive.ics.uci.edu/ml/datasets/SUSY
https://arxiv.org/abs/1810.05165

Redundancy in HEP searches

The upper-limit is able to recognize the existence of redundant information.
In HEP9 searches/event

reconstructions you have

• some low-level kinematic

variables Xlow,

(jet momenta, pseudo-rapidity,

scintillation/ionization counts,etc.)

• as well as high-level variables,

Xhigh = f (Xlow) (2)

which can be outputs of,

1. a ML algorithm10,

2. an event reconstruction

algorithm,

(invariant masses, pulse shape

variables, etc.)

3. etc.

The upper-limit guarantees that,

I [(Xlow,Xhigh); θ] = I [Xlow; θ].

(3)

Figure 1: MI vs. number of variables for the input variables X

(predicted) and the output of the trained model f (X) (acheived).

9 The SUSY Dataset, UCI Machine learning repository, https://archive.ics.uci.edu/ml/datasets/SUSY

10 Komiski et al., “Energy Flow Networks: Deep Sets for Particle Jets”, https://arxiv.org/abs/1810.05165
5

https://archive.ics.uci.edu/ml/datasets/SUSY
https://arxiv.org/abs/1810.05165

Kaggle Higgs ML Challenge

Thousands of teams competed in

the challenge11, using all sorts of

techniques,

• deep neural networks,

• boosted decision trees,

• random forests,

•
...

with the highest placed entries

clustering around a top score of

(AMS = 3.8).

Figure 2: AMS (Average mean-significance) scores for entries in the

Kaggle HiggsML challenge11. The top entry (Gabor Melis) is marked

with an (x).

Main difficulty: The data set contains a large number of variables (30), most of which

contain redundant/useless information.

11 Higgs Boson Machine Learning Challenge, Kaggle, https://www.kaggle.com/c/higgs-boson

6

https://www.kaggle.com/c/higgs-boson

Feature Selection

Using a reinforcement learning algorithm we developed called MIST (the mutual

information search tree)

we achieved the

following,

• algorithm only took

20 minutes to run,

• it requires no

training of any

models on

subspaces,

• it extracted 9

features from the set

of 30 which contain

all the relevant

information, and

• computed the

upper-limit for the

entire data set.

Figure 3: MI vs. number of variables for the winning input variables X

(predicted) and the output of a trained model12 f (X) (acheived).

12 Strong, Giles, On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an

experimental high-energy physics use case, Mach. Learn.: Sci. Technol (2020)

7

Feature Selection

Using a reinforcement learning algorithm we developed called MIST (the mutual

information search tree)

we achieved the

following,

• algorithm only took

20 minutes to run,

• it requires no

training of any

models on

subspaces,

• it extracted 9

features from the set

of 30 which contain

all the relevant

information, and

• computed the

upper-limit for the

entire data set.

Figure 3: MI vs. number of variables for the winning input variables X

(predicted) and the output of a trained model12 f (X) (acheived).

12 Strong, Giles, On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an

experimental high-energy physics use case, Mach. Learn.: Sci. Technol (2020)

7

Feature Selection

Using a reinforcement learning algorithm we developed called MIST (the mutual

information search tree)

we achieved the

following,

• algorithm only took

20 minutes to run,

• it requires no

training of any

models on

subspaces,

• it extracted 9

features from the set

of 30 which contain

all the relevant

information, and

• computed the

upper-limit for the

entire data set.

Figure 3: MI vs. number of variables for the winning input variables X

(predicted) and the output of a trained model12 f (X) (acheived).

12 Strong, Giles, On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an

experimental high-energy physics use case, Mach. Learn.: Sci. Technol (2020)

7

Feature Selection

Using a reinforcement learning algorithm we developed called MIST (the mutual

information search tree)

we achieved the

following,

• algorithm only took

20 minutes to run,

• it requires no

training of any

models on

subspaces,

• it extracted 9

features from the set

of 30 which contain

all the relevant

information, and

• computed the

upper-limit for the

entire data set.

Figure 3: MI vs. number of variables for the winning input variables X

(predicted) and the output of a trained model12 f (X) (acheived).

12 Strong, Giles, On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an

experimental high-energy physics use case, Mach. Learn.: Sci. Technol (2020)

7

Feature Selection

Using a reinforcement learning algorithm we developed called MIST (the mutual

information search tree)

we achieved the

following,

• algorithm only took

20 minutes to run,

• it requires no

training of any

models on

subspaces,

• it extracted 9

features from the set

of 30 which contain

all the relevant

information, and

• computed the

upper-limit for the

entire data set.

Figure 3: MI vs. number of variables for the winning input variables X

(predicted) and the output of a trained model12 f (X) (acheived).

12 Strong, Giles, On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an

experimental high-energy physics use case, Mach. Learn.: Sci. Technol (2020)

7

Feature Selection

Using a reinforcement learning algorithm we developed called MIST (the mutual

information search tree)

we achieved the

following,

• algorithm only took

20 minutes to run,

• it requires no

training of any

models on

subspaces,

• it extracted 9

features from the set

of 30 which contain

all the relevant

information, and

• computed the

upper-limit for the

entire data set.

Figure 3: MI vs. number of variables for the winning input variables X

(predicted) and the output of a trained model12 f (X) (acheived).

12 Strong, Giles, On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an

experimental high-energy physics use case, Mach. Learn.: Sci. Technol (2020)

7

Combining ML and PLR on LUX

We combined an ML algorithm with the standard PLR approach on LUX.

This resulted in,

1. an order of magnitude lower

computational time –

(∼ 600→ 60 min.), and

2. the option to add additional

variables without increasing

computational complexity

(e.g. pulse shape)4.

Using the ML output f (X) in-place of the original

variables X we achieved an identical result to the

Run03 re-analysis4.

Figure 4: PLR limits on the neural network output for Run03.

4 The LUX Collaboration, “Combining Machine Learning and Profile Likelihood Methods on the LUX Experiment”, In preparation

8

Combining ML and PLR on LUX

We combined an ML algorithm with the standard PLR approach on LUX.

This resulted in,

1. an order of magnitude lower

computational time –

(∼ 600→ 60 min.), and

2. the option to add additional

variables without increasing

computational complexity

(e.g. pulse shape)4.

Using the ML output f (X) in-place of the original

variables X we achieved an identical result to the

Run03 re-analysis4.

Figure 4: PLR limits on the neural network output for Run03.

4 The LUX Collaboration, “Combining Machine Learning and Profile Likelihood Methods on the LUX Experiment”, In preparation

8

Combining ML and PLR on LUX

We combined an ML algorithm with the standard PLR approach on LUX.

This resulted in,

1. an order of magnitude lower

computational time –

(∼ 600→ 60 min.), and

2. the option to add additional

variables without increasing

computational complexity

(e.g. pulse shape)4.

Using the ML output f (X) in-place of the original

variables X we achieved an identical result to the

Run03 re-analysis4.

Figure 4: PLR limits on the neural network output for Run03.

4 The LUX Collaboration, “Combining Machine Learning and Profile Likelihood Methods on the LUX Experiment”, In preparation

8

Combining ML and PLR on LUX

We combined an ML algorithm with the standard PLR approach on LUX.

This resulted in,

1. an order of magnitude lower

computational time –

(∼ 600→ 60 min.), and

2. the option to add additional

variables without increasing

computational complexity

(e.g. pulse shape)4.

Using the ML output f (X) in-place of the original

variables X we achieved an identical result to the

Run03 re-analysis4.

Figure 4: PLR limits on the neural network output for Run03.

4 The LUX Collaboration, “Combining Machine Learning and Profile Likelihood Methods on the LUX Experiment”, In preparation

8

Summary

Topics of the rest of the talk:

1. The Upper-Limit of Separability: Demonstrating MI as
an absolute metric for training discriminators

• Basic examples

• Practical HEP example - mock SUSY data set

2. The Mutual Information Search Tree: The upper-limit
as a variable/feature selection criteria in reinforcement
learning

• Pitfalls of the MI estimation scheme

• Monte Carlo Tree Search

• MIST Demo!

3. Combining ML with PLR on LUX: Reducing
computational overhead by constructing sufficient
statistics

• The LUX experiment

• The Profile Likelihood Ratio Method

• Using ML and the MI to supplement the PLR

9

The Upper-Limit of Separability
Mutual information as a hard-target for training

discriminators

Mutual Information

Mutual information has been utilized throughout many signal processing and machine

learning paradigms,

• Rate-Distortion Theory - minimization problem (Shannon, 194813).

• InfoMax Principle - maximization problem (Linsker, 198814)

• The Information Bottleneck Method - min-max problem (extension of

rate-distortion theory) (Tishby et al., 200015)

• InfoGAN - maximization problem, using MI to help disentangle representations

(Chen et al., 201616).

• Inception Score - metric used for evaluating generative models (Salimans et al.,

201617)

• Separability Principle - optimization problem in which the MI is a metric of

performance (Carrara, Ernst, 20172).

• n-partite Sufficiency - continuous measures of statistical sufficiency (Carrara,

Vanslette, 20201).

13 Shannon, Claude Elwood (July 1948). ”A Mathematical Theory of Communication” (PDF). Bell System Technical Journal. 27 (3):

379–423

14 Linsker R (1988). ”Self-organization in a perceptual network”. IEEE Computer. 21 (3): 105–17

15 Tishby et al. (2000). https://arxiv.org/abs/physics/0004057

16 Chen et al. (2016). https://arxiv.org/abs/1606.03657

17 Salimans et al. ”Improved techniques for training GANs”, https://arxiv.org/pdf/1606.03498.pdf

10

https://arxiv.org/abs/physics/0004057
https://arxiv.org/abs/1606.03657
https://arxiv.org/pdf/1606.03498.pdf

“Global Correlation Quantifiers”

In [1,2], we showed that by taking any

features (X) through some ML algorithm

(f (X)) that

I [X ; θ] ≥ I [f (X); θ] (4)

Then, by defining the sufficiency,

suffΘ[f (X)] =
I [f (X); Θ]

I [X; Θ]
, (5)

one has a measure of the systematic uncertainties in the model f (X).

1 N. Carrara and K. Vanslette, “The Design of Global Correlation Quantifiers and Continuous Notions of Statistical Sufficiency”, Entropy

2020, 22(3), 357

2 N. Carrara and J. Ernst, “On the Upper Limit of Separability”, arXiv:1708.09449

11

“Global Correlation Quantifiers”

In [1,2], we showed that by taking any

features (X) through some ML algorithm

(f (X)) that

I [X ; θ] ≥ I [f (X); θ] (4)

Then, by defining the sufficiency,

suffΘ[f (X)] =
I [f (X); Θ]

I [X; Θ]
, (5)

one has a measure of the systematic uncertainties in the model f (X).

1 N. Carrara and K. Vanslette, “The Design of Global Correlation Quantifiers and Continuous Notions of Statistical Sufficiency”, Entropy

2020, 22(3), 357

2 N. Carrara and J. Ernst, “On the Upper Limit of Separability”, arXiv:1708.09449

11

“Global Correlation Quantifiers”

In [1,2], we showed that by taking any

features (X) through some ML algorithm

(f (X)) that

I [X ; θ] ≥ I [f (X); θ] (4)

Then, by defining the sufficiency,

suffΘ[f (X)] =
I [f (X); Θ]

I [X; Θ]
, (5)

one has a measure of the systematic uncertainties in the model f (X).

1 N. Carrara and K. Vanslette, “The Design of Global Correlation Quantifiers and Continuous Notions of Statistical Sufficiency”, Entropy

2020, 22(3), 357

2 N. Carrara and J. Ernst, “On the Upper Limit of Separability”, arXiv:1708.09449

11

“On the Upper-Limit of Separability”

In “The Upper-Limit of Seperability”2 we demonstrated the following properties of MI,

• The MI is an upper-limit for any ML algorithm (eq. 4),

• the upper-limit is insensitive to redundant information (eq. 3), and

• it provides a measure of separation between two probability distributions.

By optimizing a network

so that

I [X ; θ] = I [f (X); θ] (6)

Then it’s guaranteed that

p(θ|x) = p(θ|f (x)) (7)

N.B. When (6) is satisfied, the type I (false positives) and type II (false negatives)

errors associated with θ will be identical for X and f (X)!

12

“On the Upper-Limit of Separability”

In “The Upper-Limit of Seperability”2 we demonstrated the following properties of MI,

• The MI is an upper-limit for any ML algorithm (eq. 4),

• the upper-limit is insensitive to redundant information (eq. 3), and

• it provides a measure of separation between two probability distributions.

By optimizing a network

so that

I [X ; θ] = I [f (X); θ] (6)

Then it’s guaranteed that

p(θ|x) = p(θ|f (x)) (7)

N.B. When (6) is satisfied, the type I (false positives) and type II (false negatives)

errors associated with θ will be identical for X and f (X)!

12

“On the Upper-Limit of Separability”

In “The Upper-Limit of Seperability”2 we demonstrated the following properties of MI,

• The MI is an upper-limit for any ML algorithm (eq. 4),

• the upper-limit is insensitive to redundant information (eq. 3), and

• it provides a measure of separation between two probability distributions.

By optimizing a network

so that

I [X ; θ] = I [f (X); θ] (6)

Then it’s guaranteed that

p(θ|x) = p(θ|f (x)) (7)

N.B. When (6) is satisfied, the type I (false positives) and type II (false negatives)

errors associated with θ will be identical for X and f (X)!

12

“On the Upper-Limit of Separability”

In “The Upper-Limit of Seperability”2 we demonstrated the following properties of MI,

• The MI is an upper-limit for any ML algorithm (eq. 4),

• the upper-limit is insensitive to redundant information (eq. 3), and

• it provides a measure of separation between two probability distributions.

By optimizing a network

so that

I [X ; θ] = I [f (X); θ] (6)

Then it’s guaranteed that

p(θ|x) = p(θ|f (x)) (7)

N.B. When (6) is satisfied, the type I (false positives) and type II (false negatives)

errors associated with θ will be identical for X and f (X)!

12

“On the Upper-Limit of Separability”

In “The Upper-Limit of Seperability”2 we demonstrated the following properties of MI,

• The MI is an upper-limit for any ML algorithm (eq. 4),

• the upper-limit is insensitive to redundant information (eq. 3), and

• it provides a measure of separation between two probability distributions.

By optimizing a network

so that

I [X ; θ] = I [f (X); θ] (6)

Then it’s guaranteed that

p(θ|x) = p(θ|f (x)) (7)

N.B. When (6) is satisfied, the type I (false positives) and type II (false negatives)

errors associated with θ will be identical for X and f (X)!

12

The Jensen-Shannon Divergence

In binary classification tasks MI is also equivalent to the Jensen-Shannon divergence

(JSD)18,19, which measures the separation between two distributions.

Figure 5: Examples of two distributions which are (left) mostly indistinguishable (low separation/low MI value)

and (right) highly distinguishable (large separation/high MI value)

18 Chen et al., “InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets”,

https://arxiv.org/abs/1606.03657

19 Salimans et al., “Improved techniques for training GANs”, https://arxiv.org/abs/1606.03498

13

https://arxiv.org/abs/1606.03657
https://arxiv.org/abs/1606.03498

Tests of Separation

Is the upper-limit a measure of separation?

Consider a

five-dimensional spherical

Gaussian with σi = 1.

• Generate signal (s)

and background (b)

distributions with

varying

∆µ = |µs − µb|.

• Compute the MI

before and after

training a neural

network.

The result shows that MI

is a function of the

separation ∆µ.
Figure 6: MI of five Gaussian variables vs. separation ∆µ = |µs − µb| before

(predicted) and after (achieved) training a neural network.

14

Practical HEP example: SUSY search

This practical example consists of a mock

SUSY search20,21 which

• contains 8 low-level (primitive)

variables,

(jet momenta, azimuthal angle,

pseudo-rapidity)

• contains 10 high-level (derived)

variables22.

(invariant masses, razor and super-razor

quantities)

Figure 7: Signal

((χ+χ−)→ (χ0Wχ0W)→ (χ0χ0)(`+`−νν)) and

background ((WW)→ (`+`−νν)) processes for a

SUSY search.

20 Baldi et. al., Searching for Exotic Particles in High-Energy Physics with Deep Learning, Nature Communications volume 5, 4308 (2014)

21 SUSY Data set, https://archive.ics.uci.edu/ml/datasets/SUSY

22 Buckley et. al., Super-Razor and Searches for Sleptons and Charginos at the LHC, Phys. Rev. D 89, 055020 (2014)

15

https://archive.ics.uci.edu/ml/datasets/SUSY

SUSY dataset results

The MI predicts that the 8 low-level

variables contain all relevant information.

After training our own neural network we

find,

• Each model trained on a variable

subset approaches the upper-limit

(achieved).

• The low-level (primitive) variables

achieve the same separation as the

high-level (derived) variables.

MI Low only High only Both

(predicted) 0.36(2) 0.36(2) 0.37(2)

(achieved) 0.35(2) 0.35(2) 0.36(2)

Table 1: MI values on the input variables (predicted) and

for our network (achieved) outputs.

Figure 8: MI vs. variables for the low-level (first 8) and

subsequent high-level (last 10) variables in the SUSY

dataset.

16

SUSY dataset results: AUC comparisons

To compare our neural network model to the one from the paper,

• we compute the area under curve (AUC) of

our model output.

• compare our AUC to the ones from the paper

(BSW)20.

MI Low only High only Both

(predicted) 0.36(2) 0.36(2) 0.37(2)

(achieved) 0.35(2) 0.35(2) 0.36(2)

AUC Low only High only Both

(this work) 0.87 0.87 0.88

(BSW, shallow) 0.86 0.86 0.88

(BSW, deep) 0.88 0.87 0.88
Figure 9: ROC curves from the BSW paper

for deep neural network outputs trained on

the SUSY dataset20.

20 Baldi et. al. (BSW), Searching for Exotic Particles in High-Energy Physics with Deep Learning, Nature Communications volume 5,

4308 (2014)

17

The Mutual Information Search Tree
Reinforcement learning for feature selection

Pitfalls of MI estimation

The widely used MI estimator developed by Kraskov et al. (KSG)22 has some

shortcomings.

• Accuracy in large dimensions

depends on the size of the

sample distribution.

• Useless variables drastically

affect the estimation.

To demonstrate this, consider the

SUSY search and

1. take each high level variable

(derived) and shuffle them

within signal/background to

make them useless, and

2. repeat same procedure as in

the previous slide

Figure 10: MI vs. variables for the SUSY data set where the high

level input variables are shuffled within signal/background23.

22 Kraskov, A., Stögbauer, H. and Grassberger, P., Estimating Mutual Information, https://arxiv.org/abs/cond-mat/0305641

23 N. Carrara and J. Ernst, On the estimation of mutual information, MaxEnt 2019, https://arxiv.org/abs/1910.00365

18

https://arxiv.org/abs/cond-mat/0305641
https://arxiv.org/abs/1910.00365

Pitfalls of MI estimation

The widely used MI estimator developed by Kraskov et al. (KSG)22 has some

shortcomings.

• Accuracy in large dimensions

depends on the size of the

sample distribution.

• Useless variables drastically

affect the estimation.

To demonstrate this, consider the

SUSY search and

1. take each high level variable

(derived) and shuffle them

within signal/background to

make them useless, and

2. repeat same procedure as in

the previous slide

Figure 10: MI vs. variables for the SUSY data set where the high

level input variables are shuffled within signal/background23.

22 Kraskov, A., Stögbauer, H. and Grassberger, P., Estimating Mutual Information, https://arxiv.org/abs/cond-mat/0305641

23 N. Carrara and J. Ernst, On the estimation of mutual information, MaxEnt 2019, https://arxiv.org/abs/1910.00365

18

https://arxiv.org/abs/cond-mat/0305641
https://arxiv.org/abs/1910.00365

Pitfalls of MI estimation

The widely used MI estimator developed by Kraskov et al. (KSG)22 has some

shortcomings.

• Accuracy in large dimensions

depends on the size of the

sample distribution.

• Useless variables drastically

affect the estimation.

To demonstrate this, consider the

SUSY search and

1. take each high level variable

(derived) and shuffle them

within signal/background to

make them useless, and

2. repeat same procedure as in

the previous slide

Figure 10: MI vs. variables for the SUSY data set where the high

level input variables are shuffled within signal/background23.

22 Kraskov, A., Stögbauer, H. and Grassberger, P., Estimating Mutual Information, https://arxiv.org/abs/cond-mat/0305641

23 N. Carrara and J. Ernst, On the estimation of mutual information, MaxEnt 2019, https://arxiv.org/abs/1910.00365

18

https://arxiv.org/abs/cond-mat/0305641
https://arxiv.org/abs/1910.00365

Pitfalls of MI estimation

The widely used MI estimator developed by Kraskov et al. (KSG)22 has some

shortcomings.

• Accuracy in large dimensions

depends on the size of the

sample distribution.

• Useless variables drastically

affect the estimation.

To demonstrate this, consider the

SUSY search and

1. take each high level variable

(derived) and shuffle them

within signal/background to

make them useless, and

2. repeat same procedure as in

the previous slide

Figure 10: MI vs. variables for the SUSY data set where the high

level input variables are shuffled within signal/background23.

22 Kraskov, A., Stögbauer, H. and Grassberger, P., Estimating Mutual Information, https://arxiv.org/abs/cond-mat/0305641

23 N. Carrara and J. Ernst, On the estimation of mutual information, MaxEnt 2019, https://arxiv.org/abs/1910.00365

18

https://arxiv.org/abs/cond-mat/0305641
https://arxiv.org/abs/1910.00365

Pitfalls of MI estimation

The widely used MI estimator developed by Kraskov et al. (KSG)22 has some

shortcomings.

• Accuracy in large dimensions

depends on the size of the

sample distribution.

• Useless variables drastically

affect the estimation.

To demonstrate this, consider the

SUSY search and

1. take each high level variable

(derived) and shuffle them

within signal/background to

make them useless, and

2. repeat same procedure as in

the previous slide

Figure 10: MI vs. variables for the SUSY data set where the high

level input variables are shuffled within signal/background23.

22 Kraskov, A., Stögbauer, H. and Grassberger, P., Estimating Mutual Information, https://arxiv.org/abs/cond-mat/0305641

23 N. Carrara and J. Ernst, On the estimation of mutual information, MaxEnt 2019, https://arxiv.org/abs/1910.00365

18

https://arxiv.org/abs/cond-mat/0305641
https://arxiv.org/abs/1910.00365

How do we “see” through useless variables?

Given no knowledge of the shuffling of the high-level variables, how could we know to

ignore them?

1. One potential solution would

be to compute the MI on all

2d subspaces for a

d-dimensional variable space.

2. The SUSY example would

require 218 = 262, 144 MI

calculations, which with an

average of ≈ 60s each would

take ≈ 6 months to

complete!

Figure 11: Computation time to calculate MI on every subset of a

d-dimensional space, assuming one subset takes ≈ 60s.

19

How do we “see” through useless variables?

Given no knowledge of the shuffling of the high-level variables, how could we know to

ignore them?

1. One potential solution would

be to compute the MI on all

2d subspaces for a

d-dimensional variable space.

2. The SUSY example would

require 218 = 262, 144 MI

calculations, which with an

average of ≈ 60s each would

take ≈ 6 months to

complete!

Figure 11: Computation time to calculate MI on every subset of a

d-dimensional space, assuming one subset takes ≈ 60s.

19

How do we “see” through useless variables?

Given no knowledge of the shuffling of the high-level variables, how could we know to

ignore them?

1. One potential solution would

be to compute the MI on all

2d subspaces for a

d-dimensional variable space.

2. The SUSY example would

require 218 = 262, 144 MI

calculations, which with an

average of ≈ 60s each would

take ≈ 6 months to

complete!

Figure 11: Computation time to calculate MI on every subset of a

d-dimensional space, assuming one subset takes ≈ 60s.

19

The Mutual Information Search Tree

MIST

We developed a machine learning algorithm (reinforcement learning) called the mutual

information search tree (MIST)5,6 which,

1. Searches the subspaces of variable space to find a subset which contains the

maximum amount of information,

2. does not require the training of any neural networks, and

3. quickly calculates the upper-limit on large dimensional data sets that contain

useless variables.

5 N. Carrara and J. Ernst, “The Upper-Limit of Separability”, In preparation

6 N. Carrara and J. Ernst, “The MIST Algorithm”, In preparation

20

Example Tree

The following is an example of a playout for a tree consisting of three variables,

∅

1

2

3 !3

!2

3 !3

!1

2

3 !3

!2

3 !3

Figure 12: Simple MIST search tree for three variables. Each node propagated from the left corresponds to a

variable that is kept, while each node propagated from the right is a variable that is ignored. The path highlighted

in red corresponds to a playout in which the variables (1) and (3) are kept, but variable (2) is ignored so that

Xp = {1, 3}.

21

MIST Demo

Let’s take a look at how the MIST

algorithm works!

To recap,

• MIST easily finds subspaces of

variable space in the SUSY example

which contain the most useful

information.

• The algorithm never has to train any

networks – for each playout we only

need to compute the MI.

The example to the right shows the

algorithm selecting variables {1, 2, 4, 7}
and throwing away everything else.

22

MIST Demo

Let’s take a look at how the MIST

algorithm works!

To recap,

• MIST easily finds subspaces of

variable space in the SUSY example

which contain the most useful

information.

• The algorithm never has to train any

networks – for each playout we only

need to compute the MI.

The example to the right shows the

algorithm selecting variables {1, 2, 4, 7}
and throwing away everything else.

22

MIST Demo

Let’s take a look at how the MIST

algorithm works!

To recap,

• MIST easily finds subspaces of

variable space in the SUSY example

which contain the most useful

information.

• The algorithm never has to train any

networks – for each playout we only

need to compute the MI.

The example to the right shows the

algorithm selecting variables {1, 2, 4, 7}
and throwing away everything else.

22

MIST Demo

Let’s take a look at how the MIST

algorithm works!

To recap,

• MIST easily finds subspaces of

variable space in the SUSY example

which contain the most useful

information.

• The algorithm never has to train any

networks – for each playout we only

need to compute the MI.

The example to the right shows the

algorithm selecting variables {1, 2, 4, 7}
and throwing away everything else.

22

The Higgs data set

The Higgs data set contains,

• 17 low-level (primitive)

features,

• 13 high-level (derived)

features

The top contestants clustered

around a value of AMS ∼ 3.8.
Figure 13: MI scores on the output of the first place (Melis) and

third place (Choko) submissions to the Kaggle HiggsML challenge.

23

MIST Results on the Higgs

Using MIST on the Higgs data set

we find,

• algorithm takes about 20

minutes to run,

• extracts 9 features from the

set of 30 which captures the

upper-limit of .535 ± .015.

To compare with the top

contestants, we use a trained

model developed by Giles

Strong12,24 to evaluate the

performance of the 9 winning

variables.

Figure 14: Running totals of MI of each of nine variables in the

winning MIST set. The net output (achieved) corresponds to the

model developed by Giles Strong12,24.

12 Giles Strong, On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an

experimental high-energy physics use case, https://arxiv.org/pdf/2002.01427.pdf

24 Giles Strong, Code for the HiggsML challenge, https://github.com/GilesStrong/HiggsML_Lumin

24

https://arxiv.org/pdf/2002.01427.pdf
https://github.com/GilesStrong/HiggsML_Lumin

MIST Results on the Higgs

Using MIST on the Higgs data set

we find,

• algorithm takes about 20

minutes to run,

• extracts 9 features from the

set of 30 which captures the

upper-limit of .535 ± .015.

To compare with the top

contestants, we use a trained

model developed by Giles

Strong12,24 to evaluate the

performance of the 9 winning

variables.

Figure 14: Running totals of MI of each of nine variables in the

winning MIST set. The net output (achieved) corresponds to the

model developed by Giles Strong12,24.

12 Giles Strong, On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an

experimental high-energy physics use case, https://arxiv.org/pdf/2002.01427.pdf

24 Giles Strong, Code for the HiggsML challenge, https://github.com/GilesStrong/HiggsML_Lumin

24

https://arxiv.org/pdf/2002.01427.pdf
https://github.com/GilesStrong/HiggsML_Lumin

MIST Results on the Higgs

Using MIST on the Higgs data set

we find,

• algorithm takes about 20

minutes to run,

• extracts 9 features from the

set of 30 which captures the

upper-limit of .535 ± .015.

To compare with the top

contestants, we use a trained

model developed by Giles

Strong12,24 to evaluate the

performance of the 9 winning

variables.

Figure 14: Running totals of MI of each of nine variables in the

winning MIST set. The net output (achieved) corresponds to the

model developed by Giles Strong12,24.

12 Giles Strong, On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an

experimental high-energy physics use case, https://arxiv.org/pdf/2002.01427.pdf

24 Giles Strong, Code for the HiggsML challenge, https://github.com/GilesStrong/HiggsML_Lumin

24

https://arxiv.org/pdf/2002.01427.pdf
https://github.com/GilesStrong/HiggsML_Lumin

MIST Results on the Higgs

Using MIST on the Higgs data set

we find,

• algorithm takes about 20

minutes to run,

• extracts 9 features from the

set of 30 which captures the

upper-limit of .535 ± .015.

To compare with the top

contestants, we use a trained

model developed by Giles

Strong12,24 to evaluate the

performance of the 9 winning

variables.

Figure 14: Running totals of MI of each of nine variables in the

winning MIST set. The net output (achieved) corresponds to the

model developed by Giles Strong12,24.

12 Giles Strong, On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an

experimental high-energy physics use case, https://arxiv.org/pdf/2002.01427.pdf

24 Giles Strong, Code for the HiggsML challenge, https://github.com/GilesStrong/HiggsML_Lumin

24

https://arxiv.org/pdf/2002.01427.pdf
https://github.com/GilesStrong/HiggsML_Lumin

Higgs results cont.

In our study we found,

• Error bars on the MIST

prediction tend to be larger

since the MI estimate is done

over a 9 dimensional space25.

• Prediction on the MIST

variables captures Giles model

on all variables (All) and on

the MIST subset (MIST).

• Both (Choko) and (Melis)

used additional variables, so

an apples to apples

comparison is not possible.
Figure 15: MI values corresponding to the 1st place (Melis) and 3rd

place (Choko) submissions, along with the prediction from MIST,

and the output of Giles Strong’s models on (All) variables and the 9

predicted from (MIST).

25 Holmes and Nemenman, “Estimation of mutual information for real-valued data with error bars and controlled bias”,

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.022404

25

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.022404

Higgs results cont.

In our study we found,

• Error bars on the MIST

prediction tend to be larger

since the MI estimate is done

over a 9 dimensional space25.

• Prediction on the MIST

variables captures Giles model

on all variables (All) and on

the MIST subset (MIST).

• Both (Choko) and (Melis)

used additional variables, so

an apples to apples

comparison is not possible.
Figure 15: MI values corresponding to the 1st place (Melis) and 3rd

place (Choko) submissions, along with the prediction from MIST,

and the output of Giles Strong’s models on (All) variables and the 9

predicted from (MIST).

25 Holmes and Nemenman, “Estimation of mutual information for real-valued data with error bars and controlled bias”,

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.022404

25

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.022404

Higgs results cont.

Comparing AMS scores of Giles output on

All and MIST variables,

Submission AMS MI

Prediction – .535± .015

Giles (All) 3.8± .05 .539± .01

Giles (MIST) 3.7± .1 .533± .01

Melis (1st) 3.8 .545± .015

Choko (3rd) 3.77 .536± .005

Table 2: AMS scores and MI values for the MIST

prediction (.535± .015) and the outputs of Giles, Melis

and Choko models.

Figure 16: MI values corresponding to the 1st place

(Melis) and 3rd place (Choko) submissions, along with

the prediction from MIST, and the output of Giles

Strong’s models on (All) variables and the 9 predicted

from (MIST).

26

Higgs results cont.

Comparing to Giles’ study24,

• we rank the importance of

each of the 9 winning

variables by their individual

upper-limit scores.

• The ranking matches that

determined by traditional

feature permutation

methods.

The benefit of MIST is that,

• Ranking of importance is

done at the level of entire

subsets rather than individual

variables,

• which means that the ranking

takes into account all of the

correlations.

Figure 17: Individual upper-limit scores for each of the 9 variables in

the winning set.

27

Higgs results cont.

Comparing to Giles’ study24,

• we rank the importance of

each of the 9 winning

variables by their individual

upper-limit scores.

• The ranking matches that

determined by traditional

feature permutation

methods.

The benefit of MIST is that,

• Ranking of importance is

done at the level of entire

subsets rather than individual

variables,

• which means that the ranking

takes into account all of the

correlations.

Figure 17: Individual upper-limit scores for each of the 9 variables in

the winning set.

27

Higgs results cont.

Comparing to Giles’ study24,

• we rank the importance of

each of the 9 winning

variables by their individual

upper-limit scores.

• The ranking matches that

determined by traditional

feature permutation

methods.

The benefit of MIST is that,

• Ranking of importance is

done at the level of entire

subsets rather than individual

variables,

• which means that the ranking

takes into account all of the

correlations.

Figure 17: Individual upper-limit scores for each of the 9 variables in

the winning set.

27

Combining Machine Learning and
Profile Likelihood Methods on LUX

The Liquid Underground Xenon (LUX) experiment

LUX is a dual phase (gas/liquid) Xenon TPC (time projection chamber) direct

detection experiment searching for dark matter.

Figure 18: Diagram of the dual phase Xenon TPC in the

LUX experiment which consists of two arrays of PMTs.

Events of interest consist of the following

kinematical steps:

1. Incident particles interact with the

liquid Xenon (LXe) causing either a

nuclear or electron recoil event.

(Results are insensitive to the

underlying mediator particle).

2. The recoil event releases photons (S1)

and ionization electrons.

3. An electric field causes the electrons

to drift towards the gas/liquid

interface.

4. The electrons cause additional

scintillation events at the gas/liquid

interface which releases photons (S2).

5. Both the (S1) and (S2) photons are

detected by the PMTs.

28

The Liquid Underground Xenon (LUX) experiment

LUX is a dual phase (gas/liquid) Xenon TPC (time projection chamber) direct

detection experiment searching for dark matter.

Figure 18: Diagram of the dual phase Xenon TPC in the

LUX experiment which consists of two arrays of PMTs.

Events of interest consist of the following

kinematical steps:

1. Incident particles interact with the

liquid Xenon (LXe) causing either a

nuclear or electron recoil event.

(Results are insensitive to the

underlying mediator particle).

2. The recoil event releases photons (S1)

and ionization electrons.

3. An electric field causes the electrons

to drift towards the gas/liquid

interface.

4. The electrons cause additional

scintillation events at the gas/liquid

interface which releases photons (S2).

5. Both the (S1) and (S2) photons are

detected by the PMTs.

28

The Liquid Underground Xenon (LUX) experiment

LUX is a dual phase (gas/liquid) Xenon TPC (time projection chamber) direct

detection experiment searching for dark matter.

Figure 18: Diagram of the dual phase Xenon TPC in the

LUX experiment which consists of two arrays of PMTs.

Events of interest consist of the following

kinematical steps:

1. Incident particles interact with the

liquid Xenon (LXe) causing either a

nuclear or electron recoil event.

(Results are insensitive to the

underlying mediator particle).

2. The recoil event releases photons (S1)

and ionization electrons.

3. An electric field causes the electrons

to drift towards the gas/liquid

interface.

4. The electrons cause additional

scintillation events at the gas/liquid

interface which releases photons (S2).

5. Both the (S1) and (S2) photons are

detected by the PMTs.

28

The Liquid Underground Xenon (LUX) experiment

LUX is a dual phase (gas/liquid) Xenon TPC (time projection chamber) direct

detection experiment searching for dark matter.

Figure 18: Diagram of the dual phase Xenon TPC in the

LUX experiment which consists of two arrays of PMTs.

Events of interest consist of the following

kinematical steps:

1. Incident particles interact with the

liquid Xenon (LXe) causing either a

nuclear or electron recoil event.

(Results are insensitive to the

underlying mediator particle).

2. The recoil event releases photons (S1)

and ionization electrons.

3. An electric field causes the electrons

to drift towards the gas/liquid

interface.

4. The electrons cause additional

scintillation events at the gas/liquid

interface which releases photons (S2).

5. Both the (S1) and (S2) photons are

detected by the PMTs.

28

The Liquid Underground Xenon (LUX) experiment

LUX is a dual phase (gas/liquid) Xenon TPC (time projection chamber) direct

detection experiment searching for dark matter.

Figure 18: Diagram of the dual phase Xenon TPC in the

LUX experiment which consists of two arrays of PMTs.

Events of interest consist of the following

kinematical steps:

1. Incident particles interact with the

liquid Xenon (LXe) causing either a

nuclear or electron recoil event.

(Results are insensitive to the

underlying mediator particle).

2. The recoil event releases photons (S1)

and ionization electrons.

3. An electric field causes the electrons

to drift towards the gas/liquid

interface.

4. The electrons cause additional

scintillation events at the gas/liquid

interface which releases photons (S2).

5. Both the (S1) and (S2) photons are

detected by the PMTs.

28

The Liquid Underground Xenon (LUX) experiment

LUX is a dual phase (gas/liquid) Xenon TPC (time projection chamber) direct

detection experiment searching for dark matter.

Figure 18: Diagram of the dual phase Xenon TPC in the

LUX experiment which consists of two arrays of PMTs.

Events of interest consist of the following

kinematical steps:

1. Incident particles interact with the

liquid Xenon (LXe) causing either a

nuclear or electron recoil event.

(Results are insensitive to the

underlying mediator particle).

2. The recoil event releases photons (S1)

and ionization electrons.

3. An electric field causes the electrons

to drift towards the gas/liquid

interface.

4. The electrons cause additional

scintillation events at the gas/liquid

interface which releases photons (S2).

5. Both the (S1) and (S2) photons are

detected by the PMTs.

28

The Liquid Underground Xenon (LUX) experiment

LUX is a dual phase (gas/liquid) Xenon TPC (time projection chamber) direct

detection experiment searching for dark matter.

Figure 18: Diagram of the dual phase Xenon TPC in the

LUX experiment which consists of two arrays of PMTs.

Events of interest consist of the following

kinematical steps:

1. Incident particles interact with the

liquid Xenon (LXe) causing either a

nuclear or electron recoil event.

(Results are insensitive to the

underlying mediator particle).

2. The recoil event releases photons (S1)

and ionization electrons.

3. An electric field causes the electrons

to drift towards the gas/liquid

interface.

4. The electrons cause additional

scintillation events at the gas/liquid

interface which releases photons (S2).

5. Both the (S1) and (S2) photons are

detected by the PMTs.

28

RQs (reduced quantities)

• Electron recoil (ER) - background events.

• Nuclear recoil (NR) - signal events.

Classification sets limits on the

WIMP-nucleon cross-section.

Figure 19: Observed events in the 2013 LUX exposure of 95 live days

and 145 kg fiducial mass. Distributions of uniform in-energy electron

recoils (blue) and an example 50 GeV c2 WIMP signal (red)25.

The low-level variables consist of

122 PMT signals. Typically one

uses the following high-level

(reduced quantities) statistics:

• (S1) - Sum of the number of

photons detected (phd) under

the initial scintillation pulse.

• (S2) - Sum of the number of

phd under the secondary

scintillation pulse.

• (r,z) - Reconstructed position

of the event within the

detector.

25 LUX Collaboration, Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX data, Phys.

Rev. Lett. 116, 161301 (2016)

29

The Profile Likelihood Ratio Method

The profile-likelihood ratio (PLR) method is a maximum likelihood with additional

steps.

There are two sets of parameters:

• Parameters of interest (POI) - In our

case the POI is the number of WIMP

signal events nWS.

• Nuisance parameters - Various

detector dependent parameters and

background rates λ.

Parameter Type

nWS POI

g1 nuisance

g2,DD nuisance

kLind. nuisance

nβER nuisance
...

...

Table 3: Various nuisance parameters for analysis on

LUX.

We want to fit the distribution

p(x |nWS, λ) where x = (S1, S2, r , z).

There are several difficulties:

1. Curse of dimensionality - For spaces X

for which dim(X) > 3 and the number

of bins is large, the PLR method

becomes computationally intensive.

(Limited by # bins × # variables).

2. Assumptions of independence - To

deal with this, often we make

assumptions about the independence

between variable subsets, e.g.

(S1, S2, r , z)→ (S1,S2)× (r , z) (8)

N.B. This necessarily destroys information

(correlations)!

30

The Profile Likelihood Ratio Method

The profile-likelihood ratio (PLR) method is a maximum likelihood with additional

steps.
There are two sets of parameters:

• Parameters of interest (POI) - In our

case the POI is the number of WIMP

signal events nWS.

• Nuisance parameters - Various

detector dependent parameters and

background rates λ.

Parameter Type

nWS POI

g1 nuisance

g2,DD nuisance

kLind. nuisance

nβER nuisance
...

...

Table 3: Various nuisance parameters for analysis on

LUX.

We want to fit the distribution

p(x |nWS, λ) where x = (S1, S2, r , z).

There are several difficulties:

1. Curse of dimensionality - For spaces X

for which dim(X) > 3 and the number

of bins is large, the PLR method

becomes computationally intensive.

(Limited by # bins × # variables).

2. Assumptions of independence - To

deal with this, often we make

assumptions about the independence

between variable subsets, e.g.

(S1, S2, r , z)→ (S1,S2)× (r , z) (8)

N.B. This necessarily destroys information

(correlations)!

30

The Profile Likelihood Ratio Method

The profile-likelihood ratio (PLR) method is a maximum likelihood with additional

steps.
There are two sets of parameters:

• Parameters of interest (POI) - In our

case the POI is the number of WIMP

signal events nWS.

• Nuisance parameters - Various

detector dependent parameters and

background rates λ.

Parameter Type

nWS POI

g1 nuisance

g2,DD nuisance

kLind. nuisance

nβER nuisance
...

...

Table 3: Various nuisance parameters for analysis on

LUX.

We want to fit the distribution

p(x |nWS, λ) where x = (S1, S2, r , z).

There are several difficulties:

1. Curse of dimensionality - For spaces X

for which dim(X) > 3 and the number

of bins is large, the PLR method

becomes computationally intensive.

(Limited by # bins × # variables).

2. Assumptions of independence - To

deal with this, often we make

assumptions about the independence

between variable subsets, e.g.

(S1, S2, r , z)→ (S1,S2)× (r , z) (8)

N.B. This necessarily destroys information

(correlations)!

30

The Profile Likelihood Ratio Method

The profile-likelihood ratio (PLR) method is a maximum likelihood with additional

steps.
There are two sets of parameters:

• Parameters of interest (POI) - In our

case the POI is the number of WIMP

signal events nWS.

• Nuisance parameters - Various

detector dependent parameters and

background rates λ.

Parameter Type

nWS POI

g1 nuisance

g2,DD nuisance

kLind. nuisance

nβER nuisance
...

...

Table 3: Various nuisance parameters for analysis on

LUX.

We want to fit the distribution

p(x |nWS, λ) where x = (S1, S2, r , z).

There are several difficulties:

1. Curse of dimensionality - For spaces X

for which dim(X) > 3 and the number

of bins is large, the PLR method

becomes computationally intensive.

(Limited by # bins × # variables).

2. Assumptions of independence - To

deal with this, often we make

assumptions about the independence

between variable subsets, e.g.

(S1, S2, r , z)→ (S1,S2)× (r , z) (8)

N.B. This necessarily destroys information

(correlations)!

30

The Profile Likelihood Ratio Method

The profile-likelihood ratio (PLR) method is a maximum likelihood with additional

steps.
There are two sets of parameters:

• Parameters of interest (POI) - In our

case the POI is the number of WIMP

signal events nWS.

• Nuisance parameters - Various

detector dependent parameters and

background rates λ.

Parameter Type

nWS POI

g1 nuisance

g2,DD nuisance

kLind. nuisance

nβER nuisance
...

...

Table 3: Various nuisance parameters for analysis on

LUX.

We want to fit the distribution

p(x |nWS, λ) where x = (S1, S2, r , z).

There are several difficulties:

1. Curse of dimensionality - For spaces X

for which dim(X) > 3 and the number

of bins is large, the PLR method

becomes computationally intensive.

(Limited by # bins × # variables).

2. Assumptions of independence - To

deal with this, often we make

assumptions about the independence

between variable subsets, e.g.

(S1, S2, r , z)→ (S1,S2)× (r , z) (8)

N.B. This necessarily destroys information

(correlations)!

30

The Profile Likelihood Ratio Method

The profile-likelihood ratio (PLR) method is a maximum likelihood with additional

steps.
There are two sets of parameters:

• Parameters of interest (POI) - In our

case the POI is the number of WIMP

signal events nWS.

• Nuisance parameters - Various

detector dependent parameters and

background rates λ.

Parameter Type

nWS POI

g1 nuisance

g2,DD nuisance

kLind. nuisance

nβER nuisance
...

...

Table 3: Various nuisance parameters for analysis on

LUX.

We want to fit the distribution

p(x |nWS, λ) where x = (S1, S2, r , z).

There are several difficulties:

1. Curse of dimensionality - For spaces X

for which dim(X) > 3 and the number

of bins is large, the PLR method

becomes computationally intensive.

(Limited by # bins × # variables).

2. Assumptions of independence - To

deal with this, often we make

assumptions about the independence

between variable subsets, e.g.

(S1, S2, r , z)→ (S1,S2)× (r , z) (8)

N.B. This necessarily destroys information

(correlations)!

30

The Profile Likelihood Ratio Method

The profile-likelihood ratio (PLR) method is a maximum likelihood with additional

steps.
There are two sets of parameters:

• Parameters of interest (POI) - In our

case the POI is the number of WIMP

signal events nWS.

• Nuisance parameters - Various

detector dependent parameters and

background rates λ.

Parameter Type

nWS POI

g1 nuisance

g2,DD nuisance

kLind. nuisance

nβER nuisance
...

...

Table 3: Various nuisance parameters for analysis on

LUX.

We want to fit the distribution

p(x |nWS, λ) where x = (S1, S2, r , z).

There are several difficulties:

1. Curse of dimensionality - For spaces X

for which dim(X) > 3 and the number

of bins is large, the PLR method

becomes computationally intensive.

(Limited by # bins × # variables).

2. Assumptions of independence - To

deal with this, often we make

assumptions about the independence

between variable subsets, e.g.

(S1, S2, r , z)→ (S1,S2)× (r , z) (8)

N.B. This necessarily destroys information

(correlations)!

30

The ML/PLR Method

To fix these issues, we first transform X using a neural network so that

X→ f (X) ⇒ p(nWS, λ|x) = p(nWS, λ|f (x)). (9)

The benefits of doing this include:

1. By checking that f (X) satisfies I [f (X); θ] = I [X; θ], all correlations are preserved

within X.

2. The input space to the PLR is simplified to a single variable.

3. Once a neural network model is generated, the computational cost of running

the PLR is drastically reduced (by at least an order of magnitude!) –

∼ 600→ 60 minutes.

4. One can add additional variables to X (e.g. pulse shape) without increasing the

computational complexity of the PLR!

31

The ML/PLR Method

To fix these issues, we first transform X using a neural network so that

X→ f (X) ⇒ p(nWS, λ|x) = p(nWS, λ|f (x)). (9)

The benefits of doing this include:

1. By checking that f (X) satisfies I [f (X); θ] = I [X; θ], all correlations are preserved

within X.

2. The input space to the PLR is simplified to a single variable.

3. Once a neural network model is generated, the computational cost of running

the PLR is drastically reduced (by at least an order of magnitude!) –

∼ 600→ 60 minutes.

4. One can add additional variables to X (e.g. pulse shape) without increasing the

computational complexity of the PLR!

31

The ML/PLR Method

To fix these issues, we first transform X using a neural network so that

X→ f (X) ⇒ p(nWS, λ|x) = p(nWS, λ|f (x)). (9)

The benefits of doing this include:

1. By checking that f (X) satisfies I [f (X); θ] = I [X; θ], all correlations are preserved

within X.

2. The input space to the PLR is simplified to a single variable.

3. Once a neural network model is generated, the computational cost of running

the PLR is drastically reduced (by at least an order of magnitude!) –

∼ 600→ 60 minutes.

4. One can add additional variables to X (e.g. pulse shape) without increasing the

computational complexity of the PLR!

31

The ML/PLR Method

To fix these issues, we first transform X using a neural network so that

X→ f (X) ⇒ p(nWS, λ|x) = p(nWS, λ|f (x)). (9)

The benefits of doing this include:

1. By checking that f (X) satisfies I [f (X); θ] = I [X; θ], all correlations are preserved

within X.

2. The input space to the PLR is simplified to a single variable.

3. Once a neural network model is generated, the computational cost of running

the PLR is drastically reduced (by at least an order of magnitude!) –

∼ 600→ 60 minutes.

4. One can add additional variables to X (e.g. pulse shape) without increasing the

computational complexity of the PLR!

31

The ML/PLR Method

To fix these issues, we first transform X using a neural network so that

X→ f (X) ⇒ p(nWS, λ|x) = p(nWS, λ|f (x)). (9)

The benefits of doing this include:

1. By checking that f (X) satisfies I [f (X); θ] = I [X; θ], all correlations are preserved

within X.

2. The input space to the PLR is simplified to a single variable.

3. Once a neural network model is generated, the computational cost of running

the PLR is drastically reduced (by at least an order of magnitude!) –

∼ 600→ 60 minutes.

4. One can add additional variables to X (e.g. pulse shape) without increasing the

computational complexity of the PLR!

31

The ML/PLR Method

To fix these issues, we first transform X using a neural network so that

X→ f (X) ⇒ p(nWS, λ|x) = p(nWS, λ|f (x)). (9)

The benefits of doing this include:

1. By checking that f (X) satisfies I [f (X); θ] = I [X; θ], all correlations are preserved

within X.

2. The input space to the PLR is simplified to a single variable.

3. Once a neural network model is generated, the computational cost of running

the PLR is drastically reduced (by at least an order of magnitude!) –

∼ 600→ 60 minutes.

4. One can add additional variables to X (e.g. pulse shape) without increasing the

computational complexity of the PLR!

31

Preliminary Results for Run03

Using simulated events from the LUX

Run03 re-analysis (2013)25, we

1. Constructed signal data sets for a

range of WIMP masses between

3.5− 1000GeV.

2. Calculated the upper-limit on the set

of input variables (S1,S2, r , z) for

each mass.

3. Trained an ensemble of neural

networks on each mass.

4. Using the MI score of the neural

network output, chose the best model

out of the ensemble for each mass.

Below is an example of a neural network

output for a 50GeV WIMP signal, together

with the data from Run03.

Figure 20: Histogram of the output of a neural network

trained on simulation for Run03 where the signal

corresponds to a 50 GeV WIMP. The black data points

represent the live data from Run03.

25 LUX Collaboration, Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX data, Phys.

Rev. Lett. 116, 161301 (2016)

32

Preliminary Results cont.

Using the best model output from

each ensemble, we then run the

PLR on the model output with

the following parameters:

Parameter Type

nWS POI

nER nuisance

N.B. We get an identical result to

the traditional approach with,

1. an order of magnitude lower

computational time –

(∼ 600→ 60 min.), and

2. we can add additional

variables without increasing

computational complexity

(e.g. pulse shape)26,4.

With only the single nuisance parameter (number of

background events), we find the following limit

compared to the original Run03 re-analysis4:

Figure 21: PLR limits on the neural network output for Run034.

26 The LUX Collaboration, “Liquid xenon scintillation measurements and pulse shape discrimination in the LUX dark matter detector”,

https://arxiv.org/abs/1802.06162

4 The LUX Collaboration, “Combining Machine Learning and Profile Likelihood Methods on the LUX Experiment”, In preparation

33

https://arxiv.org/abs/1802.06162

Preliminary Results cont.

Using the best model output from

each ensemble, we then run the

PLR on the model output with

the following parameters:

Parameter Type

nWS POI

nER nuisance

N.B. We get an identical result to

the traditional approach with,

1. an order of magnitude lower

computational time –

(∼ 600→ 60 min.), and

2. we can add additional

variables without increasing

computational complexity

(e.g. pulse shape)26,4.

With only the single nuisance parameter (number of

background events), we find the following limit

compared to the original Run03 re-analysis4:

Figure 21: PLR limits on the neural network output for Run034.

26 The LUX Collaboration, “Liquid xenon scintillation measurements and pulse shape discrimination in the LUX dark matter detector”,

https://arxiv.org/abs/1802.06162

4 The LUX Collaboration, “Combining Machine Learning and Profile Likelihood Methods on the LUX Experiment”, In preparation

33

https://arxiv.org/abs/1802.06162

Preliminary Results cont.

Using the best model output from

each ensemble, we then run the

PLR on the model output with

the following parameters:

Parameter Type

nWS POI

nER nuisance

N.B. We get an identical result to

the traditional approach with,

1. an order of magnitude lower

computational time –

(∼ 600→ 60 min.), and

2. we can add additional

variables without increasing

computational complexity

(e.g. pulse shape)26,4.

With only the single nuisance parameter (number of

background events), we find the following limit

compared to the original Run03 re-analysis4:

Figure 21: PLR limits on the neural network output for Run034.

26 The LUX Collaboration, “Liquid xenon scintillation measurements and pulse shape discrimination in the LUX dark matter detector”,

https://arxiv.org/abs/1802.06162

4 The LUX Collaboration, “Combining Machine Learning and Profile Likelihood Methods on the LUX Experiment”, In preparation

33

https://arxiv.org/abs/1802.06162

Preliminary Results cont.

Using the best model output from

each ensemble, we then run the

PLR on the model output with

the following parameters:

Parameter Type

nWS POI

nER nuisance

N.B. We get an identical result to

the traditional approach with,

1. an order of magnitude lower

computational time –

(∼ 600→ 60 min.), and

2. we can add additional

variables without increasing

computational complexity

(e.g. pulse shape)26,4.

With only the single nuisance parameter (number of

background events), we find the following limit

compared to the original Run03 re-analysis4:

Figure 21: PLR limits on the neural network output for Run034.

26 The LUX Collaboration, “Liquid xenon scintillation measurements and pulse shape discrimination in the LUX dark matter detector”,

https://arxiv.org/abs/1802.06162

4 The LUX Collaboration, “Combining Machine Learning and Profile Likelihood Methods on the LUX Experiment”, In preparation

33

https://arxiv.org/abs/1802.06162

Thanks

I would like to thank the physics department at the University at Albany as well as,

my advisor Jesse Ernst,

Ariel Caticha, Selman Ipek, Vivek Jain, Oleg Lunin and Kevin Vanslette for useful

discussions regarding this work,

Scott Kravitz, Matthew Szydagis, Greg Rischbeiter and the LUX Collaboration.

34

Appendix

Estimating Mutual Information

Consider the problem of estimating (MI) from a sample distribution of N points,

X × Y ⊂ X× Y, (10)

where,

X × Y = {xi , yi}Ni=1 . (11)

Given a sample which is i.i.d, we make the

assumption that the local geometry of a

point (xi , yi) ∈ X × Y approximately

represents the probability density p(xi , yi),

P(X ,Y) =

∫
X ,Y

dxdy p(x , y)

≈ cdε
dp(xi , yi), (12)

where cdε
d represents a uniform “ball” of

radius εd .
Figure 22: L∞ box around (xi , yi) to nearest neighbor.6

6 Kraskov, A., Stögbauer, H. and Grassberger, P., Estimating Mutual Information, https://arxiv.org/abs/cond-mat/0305641

35

https://arxiv.org/abs/cond-mat/0305641

Nearest Neighbor Mismatch

The KSG estimator essentially counts the number of nearest neighbor mismatches

between the joint space and the marginal spaces

v1

v2

θ

First, find the k-nearest neighbor distances

∆x̄ki for all points x̄i in the joint space

(X,Θ).

v1

v2

θ

Then, in each marginal space (X shown

above) count the number of neighbors, nxi ,

within the distance ∆x̄ki for each xi .

36

Practical HEP example: SUSY dataset

We investigated the SUSY

dataset11 from the UCI MLR12.

Figure 23: Signal ((χ+χ−)→
(χ0Wχ0W)→ (χ0χ0)(`+`−νν)) and

background ((WW)→ (`+`−νν))

processes for a SUSY search.

The dataset consists of 8 low-level kinematic

variables and 10 high-level derived variables.

Low-level High-level

pT (lepton 1) E rel
T (missing energy)

η (lepton 1) Eaxial
T (missing energy)

φ (lepton 1) MR (razor)13

pT (lepton 2) (MT
R)2 (razor)

η (lepton 2) R (razor)

φ (lepton 2) (MT)2 (razor)

pT (missing)
√
ŝR (razor)

φ (missing) MR
∆ (razor)

∆φβR (razor)

cos(θR + 1) (razor)

Masses for the supersymmetric particles are

mχ± = 200GeV and mχ0 = 100GeV.

11 Baldi et. al., Searching for Exotic Particles in High-Energy Physics with Deep Learning, Nature Communications volume 5, 4308 (2014)

12 SUSY Data set, https://archive.ics.uci.edu/ml/datasets/SUSY

13 Buckley et. al., Super-Razor and Searches for Sleptons and Charginos at the LHC, Phys. Rev. D 89, 055020 (2014)

37

https://archive.ics.uci.edu/ml/datasets/SUSY

	The Upper-Limit of Separability Mutual information as a hard-target for training discriminators
	The Mutual Information Search Tree Reinforcement learning for feature selection
	Combining Machine Learning and Profile Likelihood Methods on LUX
	Appendix

