EIC DIRC

Greg Kalicy

April 6, 2015

• Basics

- DIRC concept
- Reconstruction approach
- Main Goals
 - Investigate possibility of pushing state-of-the-art performance
 - ➢ Feasibility of using DIRC in EIC detector
 - Integration of DIRC with other systems
- Ongoing activities
 - Simulations with DrcProp and Geant
 - Prototype in particle beam
 - Component lab tests

Synthetic fused silica prototype bar

• Basics

- DIRC concept
- Reconstruction approach

Main Goals

- Investigate possibility of pushing state-of-the-art performance
- Feasibility of using DIRC in EIC detector
- Integration of DIRC with other systems
- Ongoing activities
 - Simulations with DrcProp and Geant
 - Prototype in particle beam
 - Component lab tests

MEIC IP1detector

• Basics

- DIRC concept
- Reconstruction approach
- Main Goals
 - Investigate possibility of pushing state-of-the-art performance
 - ➢ Feasibility of using DIRC in EIC detector
 - Integration of DIRC with other systems

Ongoing activities

- Simulations with DrcProp and Geant
- Prototype in particle beam
- Component lab tests

Simulation

• Basics

- DIRC concept
- Reconstruction approach
- Main Goals
 - Investigate possibility of pushing state-of-the-art performance
 - > Feasibility of using DIRC in EIC detector
 - Integration of DIRC with other systems

Ongoing activities

- Simulations with DrcProp and Geant
- Prototype in particle beam
- Component lab tests

Full system prototype in CERN test beam campaign

- Basics
 - DIRC concept
 - Reconstruction approach
- Main Goals
 - Investigate possibility of pushing state-of-the-art performance
 - > Feasibility of using DIRC in EIC detector
 - Integration of DIRC with other systems

Ongoing activities

- Simulations with DrcProp and Geant
- Prototype in particle beam
- Component lab tests

- Basics
 - > DIRC concept
 - Reconstruction approach
- Main Goals
 - Investigate possibility of pushing state-of-the-art performance
 - Feasibility of using DIRC in EIC detector
 - Integration of DIRC with other systems

Ongoing activities

- Simulations with DrcProp and Geant
- Prototype in particle beam
- Component lab tests

Setup to test photosensors in high magnetic field

Cherenkov Detectors

 Main Cherenkov detector concepts in particle physics:

Compare ring image with expected image for e/µ/π/ K/p (likelihood test) or calculate mass from track β using independent momentum measurement (B field, tracking).

DIRC Detection of Internally Reflected Cherenkov Light

- Charged particle traversing radiator (with refractive index n) with velocity $\beta = \frac{v}{c}$ emits Cherenkov photons on cone with half opening angle: $cos\theta = \frac{1}{\beta n}$
- Cherenkov angle conserved during internal reflections of propagating photons.
- Photons exit radiator bars through focusing elements into expansion volume and are imaged on photon detector array.
- . Photon detector array measures **x**, **y** and time of photons that exit radiator and defines θ_c , ϕ_c and time of propagation of individual Cherenkov photons.

Synthetic fused silica prototype bar

→ DIRC hit patterns do not look like typical RICH detector.

- → DIRC hit patterns do not look like typical RICH detector.
- → Part of the ring escapes, not totally internally reflected.
- → Ring image gets folded due to propagation in bar/plate.

DIRC Occupancy plot from experiment

MCP-PMT array

Photonis Planacon XP85012 (8 x 8 pixels)

122° polar angle

Comparison of the pixelized simulated data to test beam data.

• Grey dots in the background are true hit positions from the simulation.

- What is so challenging here?
 - Ring segments corresponding to different particles are close and overlapping

- What is so challenging here?
 - Ring segments corresponding to different particles are close and overlapping

- What is so challenging here?
 - Ring segments corresponding to different particles are close and overlapping
 - Pixelated image (+ additional background)

Pions vs Protons at 3 GeV/c.

- What is so challenging here?
 - Ring segments corresponding to different particles are close and overlapping
 - Pixelated image (+ additional background)
 - Reconstruction from 20-50 photons per event

Barrel DIRC Expected performance

- Difference in Cherenkov angle between π and K at 4 GeV/c is 6.5 mrad
- Required per track resolution has to be 2 mrad or better

$$\sigma_{\Theta_{C}}^{track} = \sqrt{\left(\sigma^{corelated}\right)^{2} + \left(\frac{\sigma_{\Theta_{C}}^{photon}}{\sqrt{N_{pe}}}\right)^{2}}$$

> $\sigma^{corelated} < 1.5 - 2 mrad$ Correlated term: tracking detectors, multiple scattering

$$\succ \sigma_{\Theta_c}^{photon} < 8-9 mrad$$

> $N_{pe} > 20$

Single photon Cherenkov angle resolution: bar size, pixel size, chromatic, bar imperfections

Number of photons: bar size, bar imperfections, photon detection

efficiency of the detector

DIRC Cherenkov angle reconstruction method

Reconstruction method

Pixel position + bar location define photon direction at bar end, stored in Look-up table, combined with particle track to calculate Θ_{c} .

• Photon path not unique Additional combinatorial background in $\Theta_{\rm C}$

DIRC Cherenkov angle reconstruction method

Improving DIRC Performance

- Make DIRC less sensitive to background ٠
 - decrease size of expansion volume
 - > use photon detectors with smaller pixels and faster timing
 - place photon detector inside magnetic field
 - Investigate alternative radiator shapes (plates, disks)
 - Push DIRC π/K separation by improving single-photon θ_{c} resolution

BABAR-DIRC Cherenkov angle res.: 9.6 mrad per photon \rightarrow 2.4 mrad/track

Limited in BABAR by:

- size of bar image
- chromaticity (n=n(λ))

- Could be improved for new DIRCs via:
- ~4.1 mrad -----> focusing optics
- size of PMT pixel ~5.5 mrad -----> smaller pixel size
 - ~5.4 mrad -----> better time resolution

9.6 mrad -----> 4-5 mrad per photon \rightarrow < 1.5–2 mrad/tr.

DIRC Design Options

Expansion volume: oil tank/prism

Radiator: narrow bar/wide plate

Focusing system: different lenses

Monte Carlo Studies

- DrcProp: stand-alone package for ray tracing simulations includes:
 - Detector geometries
 - Beam properties
- Stand alone Geant4 simulation package
 - > Physical processes
 - > Will be integrated with MEIC
- MEIC simulation
 - > EIC environment

Geant4 simulation of plate and prism geometry

Focusing Prototype of 3-component lens

- Prototype of 3 component high refractive lens without air gap.
- Lens produced and already tested in particle beam with PANDA Barrel DIRC group

Focusing Simulation of 3-component lens

Procured 3-component lens, Planacon MCP Procured 3-component lens, 2x2 mm MCP

- A high-performance DIRC will require new small-pixel photosensors.
- The simulation confirms that a resolution close to 1 mrad (6 GeV/c) can be reached at forward (and backward) angles.

To be continued...

Other DIRCs BELLE II TOP

- **Belle II TOP** is barrel DIRC-type RICH with emphasis on fast timing
- **PID goal:** $3\sigma \pi/K$ separation for p < 4 GeV/c
- **Radiator:** fused silica plate 45cm wide, 2cm thick, 250cm long.
- TOP barrel formed by 16 plates
- Small expansion volume (10cm depth)

 Photon detector: array of 32 Hamamatsu SL-10 MCP-PMTs per sector, 512 in total

Barrel DIRCs

	BaBar DIRC	BELLE II TOP	PANDA BARREL DIRC
Radiator geometry	Narrow bars (35mm)	Wide plates (450mm)	Narrow bars (32mm)
Barrel radius	85cm	115cm	48cm
Bar length	490cm (4×122.5cm)	250cm (2×125cm)	240cm (2×120cm)
Number of long bars	144 (12×12 bars)	16 (16×1 plates)	80 (16×5 bars)
Expansion volume	110cm, ultrapure water	10cm, fused silica	30cm, mineral oil
Focusing	None (pinhole)	Mirror	Lens system

Focusing	None (pinhole)	Mirror	Lens system
Photon detector	~11k PMTs	~8k MCP-PMT pixels	~15k MCP-PMT pixels
Timing resolution	~1.7ns	<0.1ns	~0.1ns
Pixel size	25mm diameter	5.5mm×5.5mm	6.5mm×6.5mm
PID goal	3 s.d. π/K to 4 GeV/c	3 s.d. π/K to 4 GeV/c	3 s.d. π/K to 3.5 GeV/c
Timeline	1999 - 2008	Installation 2015	Installation 2017/18

DIRC Example of number of hits per track

~20 photons per track predicted by simulation at 124° polar angle, 10 GeV/c momentum beam.

- > 908 photons generated per track
- \succ ~59% of photons propagate to the end of the bar.
- \geq ~25% enter expansion volume.
- ➤ ~19% reach photo cathode of MCP-PMTs.
- \geq ~2.2% detected.

DIRC Focusing options

- No focusing, bar directly coupled to the prism
- Standard UV coated lens with 2 mm air gap between bar and prism.
- Compound lens Fused silica/NLaK without air gap.

c) Compound lens

DIRC Focusing options

- In this configuration 10% improvement of photon yield, consistent with simulations.
- For particle polar angle close to 90° difference much more dramatic.

Number of hits per track:

