DUNE 35t Activity at BNL Status

B. Kirby- April 8, 2015 - BNL DUNE Local Meeting

BNL EDG and the DUNE 35t Detector

- BNL EDG group tasked with testing DUNE 35t electronic production electronics
- Test board functionality, reliability at cryogenic temperature, measure performance
- Work with instrumentation dept to debug board and firmware issues
- Integrate frontend readout into 35 t DAQ
- Develop calibration and commissioning procedures
- Contribute to electronics simulation
- Current activity focused on board validation
- Significant delay in board production schedule
- Originally anticipated production boards in Oct.
- Received production boards end of Dec.
- Cryogenic testing started end of January, ongoing...

Reminder: 35t FEMBs

- $35 t$ FrontEnd MotherBoards (FEMBs) contain analog board, FPGA board and ERNI interface board
- Analog board: 8 pairs of shaping-amplifier ASICs and digitizing ADC ASICs, 128 channels
- FPGA board: Programs and coordinates ASIC operation and readout, streams data to backend through GB transceivers and PGP interface
- ERNI connector board: GB cable connector board

35t FEMBs in the DAQ

- ArtDAQ provides run control, initiates configuration of subdetectors
- BoardReader receives formatted data from Cluster-on-Board (COB)
- COB receives FEMB data, sends FEMB configuration through SLAC PGP interface - Also applies zero-suppresion (to be implemented!)
- FEMBs fully integrated into DAQ as of March 20:
- FEMBs configured and ADC data streamed using artDAQ interface
- Have PGP-card readout working at BNL, emulates COB readout

35t Production Board Validation

 Procedure- Boards validated in several steps:
a. Basic functionality tests
- Verify boards work, can be calibrated
b. Cryogenic testing:
- Verify boards continue to work in liquid nitrogen, can be programmed, take data etc.
c. Final validation data-taking
- Determine if boards still work after cryo testing

35t FEMB Tested in Liquid Nitrogen

Board Validation Status

Overall FEMB Testing Summary		Current Location	Basic Test	Cryogenic Test	Final Modifications?	Valldation Data Runs	Valldation Data Analyzed?	Cleaned?	Shipped?
FEMB\#	Identifier								
			Test Log	Cryo Test Log		Run Log			
1	F1A1E1	Instrumentation	PASS	FAIL	-				
2	F2A2E2	Instrumentation	PASS	FAIL	-				
3	F3A?E3??	FNAL	MISSING	PASS	-				
4	F4AAE4	lab 233	PASS	PASS	PASS	433-469		PASS	
5	F5A5E5	Instrumentation	PASS	FAIL	-				
6	F6A6E6	lab 233	PASS	PASS	IN PROGRESS				
7	F7ATET	Instrumentation	PASS	FAIL	-				
8	F8ABE8	FNAL	PASS	PASS	-				
9	F9APE9	lab 233	PASS	PASS	PASS	356-393	PASS	PASS	
10	F10A10E10	lab 233	PASS	PASS	PASS	318-355	PASS	PASS	
11	F11A11E11	lab 233	PASS	PASS	REDO - needs P5 connector	168-207	PASS	PASS	
12	F12A12E12	Instrumentation	PASS	FAIL	-				
13	F13A13E13	lab 233	PASS	PASS	PASS	-		PASS	
14	F14A14E14	high-bay	PASS	FAIL	-				
15	F15A15E15	lab 233	PASS	PASS	IN PROGRESS				
16	F16A16E16	Instrumentation	PASS	FAIL	-				
17	F17A17E17	lab 233	PASS	PASS	PASS	394-430	PASS	PASS	
18	F18A18E18	Instrumentation	PASS	MODIFIED-UNU	USABLE				
19	F19A0E19	high-bay	PASS	FAIL					

Summary of Current Board Failures

- 3 boards not programmable by JTAG in liquid nitrogen
- Cause is not clear, swapping FPGA boards
- 3 boards have ASICs not getting programmed by SPI
- Usually single pin issue
- 1 boards not streaming data from all ASICs
- ADC link or FPGA board connector problem
- 1 ASIC not getting calibration signal
- ASIC replaced April 7

"Stuck Code" Issue with FEMB Data

Example Baseline Waveform

ADC Sample Distribution Vs. Channel \#

- Still observe "stuck ADC codes" in FEMB digitized data
- Fairly rare at room temperature, $\sim 3 \%$ of channels
- Issue becomes worse in liquid nitrogen, see significant variation between boards
- Electronic noise or variation in ADC ASIC power supply possibly causes
- Under study by us and instrumentation dept engineer + student
- Baseline distribution obtained from entire FEMB shows interesting features
- Offsets possibly FE ASIC feature, does not affect pulse shapes
- Used low-threshold setting to make this plot, induction channels will be OK

Summary

- Nearly finished validating $35 t$ production boards
- 8 boards being debugged
- Trying to understand ADC code issue in liquid nitrogen
- Running out of time to fix it in hardware
- Looking at firmware fixes (staggering ADC sampling clocks)
- Considering software fixes (spurious sample filter?)
- Critical that physicists help BNL engineers with next revision of cold electronic boards:
- Boards/ASICs redesign underway, informed from 35t issues
- Engineers have significant time constraints, need help analyzing large amount of data and boards
- Test setup in place for room temperature and cryogenic board testing going forward

