
Belle II Conditions Database
(the very brief version !) 

Paul Laycock



Belle II Conditions Model
• Data Model: relational DB 

• Single tables for payload, tags, IOVs 
• Payloads can be separated 

completely from metadata, 
only need a reference in the DB 

• Largely experiment agonistic 

• List of IOVs and payloads retrieval 
are independent 

• Cache-friendly design 

• Largely follows best practice 
principles in HSF CWP paper: 

• https://arxiv.org/abs/1901.05429

2

Data model from CWP paper

https://belle2db.sdcc.bnl.gov/b2s/rest/v2/iovs/?gtName=B2BII&runNumber=6

https://arxiv.org/abs/1901.05429


Belle II Conditions Service

• Payloads are retrieved from the file service (left), but are preferentially taken from a local cache (if already used) 
or from cvmfs - for Belle II this means there isn’t much traffic for the file service, may be different for sPHENIX 

• The metadata service is a relational DB but as it is only the metadata it is small, < 3 GB for Belle II which 
includes all Belle data as well 

• These features for Belle II led to the SDCC proposal to use VMs 
• Carlos has tested that also the VM deployment copes with 100s Hz rates, Belle II compute scale is order 

40k parallel jobs

3

NFS



Belle II Conditions Framework Service

• On the client (framework) side, the user interacts with DBObjPtr/DBObjArray 
• Multiple instances point to the DBEntries kept in the DBStore 
• So… global tag for configuration: GlobalTag = “FinalFinalBestCalibration2040” 

• resolves to payload-type tags for every payload used in reco 
• Reco module asks a ConditionsService for payload-type and gives a timestamp read from the event 

• cdbSvc->Get(“MyCalibrationType”, Run_number)

4



Conditions management

5

• Organising the conditions to be used in offline processing can be a real bottleneck to delivering quality physics, 
if you may need versioning then build it in and don’t assume you won’t! 

• Running global tags are also really crucial!!


