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Pb-Pb collisions at the LHC

| will discuss the interpretation of selected 201 | LHC data

on identified hadron production in Pb+Pb collisions at 2.76
TeV.




Sketch of a Pb+Pb collision at LHC

* Relativistic contraction of length by factor 5000:
colliding thin pancakes

* The collision creates strongly-coupled quark-gluon
matter, governed by strong interactions, which expands
into the vacuum. ~30000 particles produced at the end.

* The best theoretical description is a macroscopic one: a
small lump of fluid.



Qutline

* How we see collective flow in p. spectra

*  What can we learn about the fluid just by analyzing these
spectra, without any detailed hydrodynamic modeling?

* Generalization of the traditional blast-wave approach.

* Generic differences between blast wave and hydrodynamics

» Generalized blast-wave fits to LHC data

» Centrality dependence of p; spectra



vidence for collective motion: the ridge
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Collective motion

Fluid velocity v

Thermal motion

The velocity of a particle embedded in a fluid is the sum™ of the
fluid velocity v, which is the same for all particles around a given
point, and a random thermal velocity of magnitude ~+/T/m.

*up to relativistic details



Collective motion

Fluid velocity v

Thermal motion

The energy of a particle in the fluid can be decomposed as
E= m/V/Iv2  + O(T)

The collective motion has a larger effect on heavy particles.
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Collective motion seen in m. spectra
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In proton-proton collisions, slopes are comparable for 1T, K, p
In Pb+Pb collisions, spectra are flatter for heavier particles.
Evidence for radial collective flow.
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Collective motion seen in p; spectra
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Various hydrodynamic models
(VISH2+ 1, HKM, Krakow)
were able to predict the p¢
spectra reasonably well: they
naturally capture the mass
ordering.

Blast Wave fits, where the
parameters are typically a fluid
velocity and a temperature,
describe the spectra very well.
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Our goal

* What can we learn about the fluid directly from experimental
data, without running a specific hydrodynamic simulation
(whose results depend on initial conditions, equation of state,
transport coefficients, treatment of hadronic phase)?

* ldea: Generalized blast wave fit to data, in a way that follows as
closely as possible an actual hydrodynamic calculation.

» Three differences with the traditional blast-wave fit.
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Generalized blast wave fit (1/3)

Write the momentum distribution as an arbitrary superposition
of boosted thermal distributions l

%N_25+1/ 1
d3p B (271‘)3 eE™/Ts + 1

/ Volume of fluid

E* = pHuy = energy of particle in fluid frame  with velocity u
T¢= temperature up to du

11



Generalized blast wave fit (2/3)

Integrate over rapidity and azimuthal angle to obtain the
transverse momentum distribution

25 +°°
pt7 )— (27_‘_ 3 pt/ /_ﬂ- d¢ E*/Tf _:1

u = radial component of 4-velocity = v/+/1-v2

In this talk, | call u the « fluid velocity », but it can be >1.
(Q(u)du = volume of fluid in fm3 = same for all particle species
T¢= freeze-out temperature = same for all particle species

where
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Generalized blast wave fit (3/3)

All hadron resonances are produced at temperature Ts
following to the boosted thermal distribution.
Resonances decay to stable hadrons which are measured.

We take into account the feed-down from resonance decays
using the FastReso code of Mazeliauskas et al. 1809.11049
(see also 1907.11059). Amounts to replacing

1 o o o B
(3E*/T.f 41 ? fl(E )+(f2(E ) _fl(E )) p()

where f|(E*) and f2(E*) are functions which are computed by
FastReso for each stable hadron.
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Viscous or ideal hydro?

State-of-the-art hydrodynamic calculations include viscosity,
which implies that the fluid is locally out of equilibrium.

The resulting modifications of the equations of hydro are
robust: Navier-Stokes+2nd order terms.

How the off-equilibrium correction is shared among the
hadrons, and how it depends on momentum, is not known.
It depends on the microscopic interactions at freeze-out

(Dusling et al. 0909.0754).

Viscosity has a large effect on anisotropic flow, but a smaller
effect on the spectra.We neglect it.
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Blast-wave versus hydro

In a hydrodynamic calculation, one evaluates momentum
distributions of outgoing particles by integrating over a
freeze-out isotherm which is a curve in space-time.
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Blast-wave versus hydro

Space-like part of the isotherm.
Evaluate the hadron content of the fluid at a given time =
At each point, a boosted thermal distributions = blast wave.
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Blast-wave versus hydro

Time-like part of the isotherm. The particle flux through a
fixed surface is proportional to the particle velocity.
This contribution is not just a boosted thermal distribution.
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Blast-wave versus hydro

The blast-wave can be seen as an approximation where
particle velocity = fluid velocity
We call this approximation semi-Cooper-Frye.
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dN/dp:dy (GeV™1)

Test of semi-Cooper-Frye

T K P
300 7 |

—— Cooper Frye 40 1

———- i-CF
2000 - Semi-C 200 -

Direct production (before decays)

Spectra from an ideal hydrodynamic simulation run with Music
of one random central Pb+Pb collision at 2.76 TeV.
Initial conditions from TRENTo

19



https://github.com/MUSIC-fluid/MUSIC
https://github.com/Duke-QCD/trento
https://github.com/MUSIC-fluid/MUSIC
https://github.com/Duke-QCD/trento

Test of semi-Cooper-Frye

T K P
300

—— Cooper Frye 40 1

2000 - ---- Semi-CF 9200 -

1000 ~ 100 - [

dN/dp:dy (GeV™1)

Approximation particle velocity = fluid velocity
Overestimates yield at low p¢
Underestimates yield at high p.
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Test of the fitting algorithm

 The generalized blast-wave fit to the spectra returns the
distribution of the fluid velocity ()(u).

* In hydrodynamics, ()(u) can be computed directly from
the freeze-out isotherm.

(D)
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S o &
~ O
& = 5000 - 5 100
o . 1
(}E)) 0 4 #¢direct B 0.75 1 | |
0 9 0.0 2.5 5.0
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WVe first fit spectra (combined fit of 1T, K, p) obtained within
the blast-wave approximation, as a consistency check. OK.
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Blast-wave fit to hydrodynamics

We then fit the full hydrodynamic result
(p: distributions computed using standard Cooper-Frye)

= 1.25 A

> —~ 100004 s fit N — 7
|_|I_ é :5" ..... hydI’O i k K
NN 5 O 1.00 HAc==—=== T
§ < 50004 :.5|— =] 1.00 p
S c =
0 9 0.0 2.5 5.0
U Dt (GeV)

- A blast-wave fit, even generalized, does not give a perfect fit to
an actual ideal hydrodynamic calculation

* The fit returns a distribution of fluid velocity ()(u) which is
shifted to the right and narrower than the true distribution
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Application to LHC data
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The freeze-out
temperature T is the same
for all hadron species.

It determines relative
abundances of hadrons,
rather than spectra.
Preferred temperature for

non-strange hadrons is
~|35 MeV.



dN/dp;dy (GeV~1)

data /fit

Application to LHC data
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Combined fit to 1T, K, p
spectra from Pb+Pb
collisions at 2.76 TeV.

Decent fit all the way up
to p~5 GeVlc.
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dN/dp;dy (GeV~1)

data /fit

Application to LHC data
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Main differences data/fit:

* Yield at high p:
underpredicted

* Pion yield at low px
underpredicted

* Proton spectrum
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dN/dp;dy (GeV~1)

data /fit

Application to LHC data
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ALICE data
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Difference blast wave /
experiment >
Difference blast wave /
ideal hydro.

We see a discrepancy
between experiment and
ideal hydro.
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dN/dp;dy (GeV~1)

data /fit

Application to LHC data
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Simplest interpretation:
Viscous correction Of at
freeze-out.

Implies large Of for low-
momentum pions, at
variance with the usual
quadratic ansatz in p?
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Distribution of fluid velocity from data
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Distribution of fluid velocity from data
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Distribution of hadron velocities
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* Heavy particles follow

the fluid: for :
the distribution of pJ/m is
close to the distribution
of the fluid 4-velocity.
Therefore, a combined
blast-wave fit to
identified particle spectra
is dominated by the
particles
included in the fit.



Blast-wave fits to unidentified spectra

* We have also fitted the

\)
-
-
-
-
|
—_
—

0— 5%
< g charged hadron spectra
5 10000 g published by ALICE.

o
©

i <’\ » _ * The fit is now dominated
: ' iy ] by the , which
represent ~85% of the
hadron yield.
- Good fit all the way to
p~5GeV/c

data/fit
=
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10000 A 10=20% o . .
% " * Pion yield at low pt
= 5000 g « explained » by a a

fraction of the fluid at

0.6 25 5.0 rest: u~0.
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1.0

0.2 1

Centrality dependence of

the fluid velocity distribution

0 25 o0 75

centrality (%)

— fit identified
----- fit charged
hydro

* We evaluate t
the standard d

ne mean <u> and
eviation 0(u) of the

fluid velocity distribution €)(u)
from LHC data, as a function of
the collision centrality.

* We calculate <u> and O(u) in
event-by-event ideal hydro.
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1.0

0.2 -

Centrality dependence of

the fluid velocity distribution

0 25 50
centrality (%)

75

fit identified
fit charged

hydro

()(u) becomes broader for more
peripheral collisions: (u)/<u>
Increases.

A similar increase is found in our
event-by-event hydro calculation.

- Event-by-event fluctuations

naturally explain the observed
centrality dependence of p;
spectra.
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Summary

*  We have generalized the blast-wave fit in a way that follows
as closely as possible an actual hydrodynamic calculation:
arbitrary distribution of fluid velocity ()(u), resonance
decays included.

- Still, a blast-wave fit is not equivalent to a hydrodynamic
calculation due to the time-like part of the freeze-out
isotherm.

*  We obtain good fits of ALICE data all the way up to
p~5GeV/c.

 The pion excess at low p; compared to hydro is generic.
* The mild centrality dependence of p. spectra is naturally

explained in hydrodynamics. Its broadening is due to event-
by-event fluctuations.
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Supplementary material
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Cooper-Frye vs semi-Cooper-Frye

Cooper-Frye

do,

dN 25 +1 / 1 pH
Bp  (2m)3 ), eE*/Tr +

1 p()

semi-Cooper-Frye do,

dN  25+1 / 1 ut
Bp  (2n)3 ), eE /T 1 u0

= ik / : (2(u)du

(27)3 ) eE"/Tr +1
ut
where Q(u)du = / —do,
Jou in du U

defines the distribution of fluid velocity in hydro.
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|dentified versus charged spectra
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identified /inclusive

By summing the identified spectra of 11, K, p, 2, one
recovers the unidentified charged spectra.
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