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I will discuss the interpretation of selected 2011 LHC data 
on identified hadron production in Pb+Pb collisions at 2.76 
TeV.                                
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Pb-Pb collisions at the LHC



Sketch of a Pb+Pb collision at LHC

• Relativistic contraction of length by factor 5000: 
colliding thin pancakes 

• The collision creates strongly-coupled quark-gluon 
matter,  governed by strong interactions, which expands 
into the vacuum.  ~30000 particles produced at the end. 

• The best theoretical description is a macroscopic one: a 
small lump of fluid.
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Outline

• How we see collective flow in pt spectra
• What can we learn about the fluid just by analyzing these  

spectra, without any detailed hydrodynamic modeling? 
• Generalization of the traditional blast-wave approach. 
• Generic differences between blast wave and hydrodynamics
• Generalized blast-wave fits to LHC data
• Centrality dependence of pt spectra
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Evidence for collective motion: the ridge

In the most ~50% central collisions, pair 
correlations display a regular wave 
pattern, which is broken in more 
peripheral collisions
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Collective motion

Fluid velocity v

Thermal motion

The velocity of a particle embedded in a fluid is the sum* of the 
fluid velocity v, which is the same for all particles around a given 
point, and a random thermal velocity of magnitude ~√T/m. 

*up to relativistic details
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Collective motion

Fluid velocity v

Thermal motion

The energy of a particle in the fluid can be decomposed as 

E =   m/√1-v2      +    O(T)

The collective motion has a larger effect on heavy particles.
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Collective motion seen in mt spectra
ALICE 1504.00024 ALICE 1208.1974

In proton-proton collisions, slopes are comparable for π, K, p
In Pb+Pb collisions, spectra are flatter for heavier particles. 
Evidence for radial collective flow.
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Collective motion seen in pt spectra
ALICE 1208.1974

Various hydrodynamic models 
(VISH2+1, HKM, Krakow)  
were able to predict the pt 
spectra reasonably well: they 
naturally capture the mass 
ordering. 

Blast Wave fits, where the 
parameters are typically a fluid 
velocity and a temperature, 
describe the spectra very well.   

https://arxiv.org/pdf/1208.1974.pdf
https://arxiv.org/pdf/1208.1974.pdf
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Our goal

• What can we learn about the fluid directly from experimental 
data, without running a specific hydrodynamic simulation 
(whose results depend on initial conditions, equation of state, 
transport coefficients, treatment of hadronic phase)?

• Idea: Generalized blast wave fit to data, in a way that follows as 
closely as possible an actual hydrodynamic calculation. 

• Three differences with the traditional blast-wave fit. 
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Generalized blast wave fit (1/3)

Write the momentum distribution as an arbitrary superposition
of boosted thermal distributions 

E* = pμuμ = energy of particle in fluid frame
Tf = temperature

Volume of fluid
with velocity u
up to du
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Generalized blast wave fit (2/3)

Integrate over rapidity and azimuthal angle to obtain the 
transverse momentum distribution 

where

u = radial component of 4-velocity = v/√1-v2 
In this talk, I call u the « fluid velocity », but it can be >1.  
Ω(u)du = volume of fluid in fm3 = same for all particle species
Tf = freeze-out temperature = same for all particle species
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Generalized blast wave fit (3/3)

All hadron resonances are produced at temperature Tf 
following to the boosted thermal distribution.
Resonances decay to stable hadrons which are measured. 

We take into account the feed-down from resonance decays 
using the FastReso code of Mazeliauskas et al. 1809.11049  
(see also 1907.11059).  Amounts to replacing

where f1(E*) and f2(E*) are functions which are computed by 
FastReso for each stable hadron. 

https://github.com/amazeliauskas/FastReso
https://arxiv.org/abs/1809.11049
https://arxiv.org/abs/1907.11059
https://github.com/amazeliauskas/FastReso
https://arxiv.org/abs/1809.11049
https://arxiv.org/abs/1907.11059
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Viscous or ideal hydro? 

State-of-the-art hydrodynamic calculations include viscosity, 
which implies that the fluid is locally out of equilibrium.

The resulting modifications of the equations of hydro are 
robust: Navier-Stokes+2nd order terms. 

How the off-equilibrium correction is shared among the 
hadrons, and how it depends on momentum, is not known.  
It depends on the microscopic interactions at freeze-out  
(Dusling et al. 0909.0754). 

Viscosity has a large effect on anisotropic flow, but a smaller 
effect on the spectra.We neglect it. 

https://arxiv.org/abs/0909.0754
https://arxiv.org/abs/0909.0754
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Blast-wave versus hydro

In a hydrodynamic calculation, one evaluates momentum 
distributions of outgoing particles by integrating over a 
freeze-out isotherm which is a curve in space-time. 
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Blast-wave versus hydro

Space-like part of the isotherm.   
Evaluate the hadron content of the fluid at a given time =  
At each point, a boosted thermal distributions = blast wave. 



17

Blast-wave versus hydro

Time-like part of the isotherm.  The particle flux through a 
fixed surface is proportional to the particle velocity. 
This contribution is not just a boosted thermal distribution. 
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Blast-wave versus hydro

The blast-wave can be seen as an approximation where 
particle velocity ≈ fluid velocity
We call this approximation semi-Cooper-Frye.
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Test of semi-Cooper-Frye

After feed-down from decays

Direct production (before decays) 

Spectra from an ideal hydrodynamic simulation run with Music
of one random central Pb+Pb collision at 2.76 TeV. 

Initial conditions from TRENTo

https://github.com/MUSIC-fluid/MUSIC
https://github.com/Duke-QCD/trento
https://github.com/MUSIC-fluid/MUSIC
https://github.com/Duke-QCD/trento
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Test of semi-Cooper-Frye

Approximation particle velocity ≈ fluid velocity
Overestimates yield at low pt

Underestimates yield at high pt
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Test of the fitting algorithm
• The generalized blast-wave fit to the spectra returns the 

distribution of the fluid velocity Ω(u). 
• In hydrodynamics, Ω(u) can be computed directly from  

the freeze-out isotherm.

fit

direct

We first fit spectra (combined fit of π, K, p) obtained within 
the blast-wave approximation, as a consistency check. OK.



22

Blast-wave fit to hydrodynamics 

We then fit the full hydrodynamic result 
(pt distributions computed using standard Cooper-Frye)

• A blast-wave fit, even generalized, does not give a perfect fit to 
an actual ideal hydrodynamic calculation

• The fit returns a distribution of fluid velocity Ω(u) which is 
shifted to the right and narrower than the true distribution
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Application to LHC data

• The freeze-out 
temperature Tf is the same 
for all hadron species.

• It determines relative 
abundances of hadrons, 
rather than spectra. 

• Preferred temperature for 
non-strange hadrons is 
~135 MeV.  



24

Application to LHC data 

Combined fit to π, K, p 
spectra from Pb+Pb 
collisions at 2.76 TeV.
Decent fit all the way up 
to pt~5 GeV/c.

https://arxiv.org/abs/1303.0737
https://arxiv.org/abs/1303.0737
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Application to LHC data 

Main differences data/fit: 
• Yield at high pt 

underpredicted
• Pion yield at low pt 

underpredicted
• Proton spectrum

https://arxiv.org/abs/1303.0737
https://arxiv.org/abs/1303.0737
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Application to LHC data 

Difference blast wave / 
experiment >   
Difference blast wave / 
ideal hydro.  
We see a discrepancy 
between experiment and 
ideal hydro. 

https://arxiv.org/abs/1303.0737
https://arxiv.org/abs/1303.0737
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Application to LHC data 

Simplest interpretation: 
Viscous correction δf at 
freeze-out. 
Implies large δf for low-
momentum pions, at 
variance with the usual 
quadratic ansatz in p2

https://arxiv.org/abs/1303.0737
https://arxiv.org/abs/1303.0737
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Distribution of fluid velocity from data

Total volume of the fluid 
per unit rapidity ∫Ω(u)du 
extracted from  
experiment ≈ same as in a 
standard hydro calculation 
for all centralities. 

This volume determines 
the hadron multiplicity. 
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Distribution of fluid velocity from data

• Fluid velocity distribution 
from experiment: 
narrower than expected in 
hydro.  

• Partially explained by the 
difference between blast 
wave and hydro.

• Large fluid velocities 
explain why the fit works 
up to pt~5 GeV/c. 
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Distribution of hadron velocities

• Heavy particles follow 
the fluid: for deuterons, 
the distribution of pt/m is 
close to the distribution 
of the fluid 4-velocity. 

• Therefore, a combined 
blast-wave fit to 
identified particle spectra 
is dominated by the 
heaviest particles 
included in the fit.



31

Blast-wave fits to unidentified spectra

• We have also fitted the 
charged hadron spectra 
published by ALICE. 

• The fit is now dominated 
by the pions, which 
represent  ~85% of the 
hadron yield. 

• Good fit all the way to 
pt~5GeV/c 

• Pion yield at low pt 
« explained » by a a 
fraction of the fluid at  
rest: u~0.  
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Centrality dependence of 
the fluid velocity distribution

• We evaluate the mean <u> and 
the standard deviation σ(u) of the 
fluid velocity distribution Ω(u) 
from LHC data, as a function of 
the collision centrality. 

• We calculate <u> and σ(u) in 
event-by-event ideal hydro.  
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Centrality dependence of 
the fluid velocity distribution

• Ω(u) becomes broader for more 
peripheral collisions: σ(u)/<u> 
increases. 

• A similar increase is found in our 
event-by-event hydro calculation. 

• Event-by-event fluctuations 
naturally explain the observed 
centrality dependence of pt 
spectra. 
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Summary

• We have generalized the blast-wave fit in a way that follows 
as closely as possible an actual hydrodynamic calculation: 
arbitrary distribution of fluid velocity Ω(u), resonance 
decays included. 

• Still, a blast-wave fit is not equivalent to a hydrodynamic 
calculation due to the time-like part of the freeze-out 
isotherm. 

• We obtain good fits of ALICE data all the way up to 
pt~5GeV/c.

• The pion excess at low pt compared to hydro is generic. 
• The mild centrality dependence of pt spectra is naturally 

explained in hydrodynamics. Its broadening is due to event-
by-event fluctuations. 
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Supplementary material
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Cooper-Frye vs semi-Cooper-Frye

Cooper-Frye

semi-Cooper-Frye

where

defines the distribution of fluid velocity in hydro.
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Identified versus charged spectra

By summing the identified spectra of π, K, p, Σ, one 
recovers the unidentified charged spectra. 


