
Random Number Seeding in
PythiaeRHIC, DJANGOH, and

BeAGLE

Barak Schmookler (SBU Postdoc)

Dmitriy Kim (SBU Undergraduate)

Daniel Waxman (SBU Undergraduate)

3/10/2021 1

Motivation

➢For many of the EIC Yellow Report
(and future) simulation work, it is
necessary to generate large numbers
of events

➢For PythiaeRHIC and DJANGOH it
takes about 0.5-1 hour to generated 1
million minimum bias events on the
BNL (RCF) machines

➢For BeAGLE, it takes about 30 hours to
generate 1 million minimum bias
events for an electron-heavy ion
reaction

➢So it is obviously required to run
multiple simulation jobs
simultaneously

3/10/2021 2

Simple Job Submission on RCF
Submission Script Shell Script

3/10/2021 3

How do the random seeds look for 10 jobs?

PythiaeRHIC

ep_minbias_0.log: SEED = 1996269241

ep_minbias_1.log: SEED = 469140822

ep_minbias_2.log: SEED = 884076946

ep_minbias_3.log: SEED = 923366337

ep_minbias_4.log: SEED = 374194774

ep_minbias_5.log: SEED = 574675150

ep_minbias_6.log: SEED = 113151324

ep_minbias_7.log: SEED = 1712347962

ep_minbias_8.log: SEED = 1483163476

ep_minbias_9.log: SEED = 1838488092

DJANGOH or BeAGLE

eAu_0.log: SEED = 2411

eAu_1.log: SEED = 2421

eAu_2.log: SEED = 2296

eAu_3.log: SEED = 2296

eAu_4.log: SEED = 2421

eAu_5.log: SEED = 2136

eAu_6.log: SEED = 2321

eAu_7.log: SEED = 2136

eAu_8.log: SEED = 2391

eAu_9.log: SEED = 2391

3/10/2021 4

How do the random seeds look for 10 jobs?

PythiaeRHIC

ep_minbias_0.log: SEED = 1996269241

ep_minbias_1.log: SEED = 469140822

ep_minbias_2.log: SEED = 884076946

ep_minbias_3.log: SEED = 923366337

ep_minbias_4.log: SEED = 374194774

ep_minbias_5.log: SEED = 574675150

ep_minbias_6.log: SEED = 113151324

ep_minbias_7.log: SEED = 1712347962

ep_minbias_8.log: SEED = 1483163476

ep_minbias_9.log: SEED = 1838488092

DJANGOH or BeAGLE

eAu_0.log: SEED = 2411

eAu_1.log: SEED = 2421

eAu_2.log: SEED = 2296

eAu_3.log: SEED = 2296

eAu_4.log: SEED = 2421

eAu_5.log: SEED = 2136

eAu_6.log: SEED = 2321

eAu_7.log: SEED = 2136

eAu_8.log: SEED = 2391

eAu_9.log: SEED = 2391

3/10/2021 5

Simplest fix is to delay each job based on job number…

VAR1=$1
VAR2=$((2 * ${VAR1}))
echo "Sleeping for ${VAR2} Seconds"
sleep ${VAR2}

3/10/2021 6

Add this to the shell script before
running the generator:

Simplest fix is to delay each job based on job number…
but this still does not work perfectly

VAR1=$1
VAR2=$((2 * ${VAR1}))
echo "Sleeping for ${VAR2} Seconds"
sleep ${VAR2}

eAu_0.log: SEED = 2151
eAu_1.log: SEED = 2156
eAu_2.log: SEED = 2291
eAu_3.log: SEED = 2256
eAu_4.log: SEED = 2281
eAu_5.log: SEED = 2331
eAu_6.log: SEED = 2346
eAu_7.log: SEED = 2381
eAu_8.log: SEED = 2391
eAu_9.log: SEED = 2156

3/10/2021 7

Add this to the shell script before
running the generator:

How is the random seed set in PythiaeRHIC?

3/10/2021 8

The random number seed is set in the C++ wrapper script
UsingCardPythiaMain.cpp (https://gitlab.com/eic/mceg/PYTHIA-RAD-
CORR/-/blob/master/src/drivers/UsingCardPythiaMain.cpp) :

It seems like initially the time
was used to set the seed

But the issue for batch jobs was
recognized and now the machine
entropy (from /dev/urandom) is

used to set the seed

https://gitlab.com/eic/mceg/PYTHIA-RAD-CORR/-/blob/master/src/drivers/UsingCardPythiaMain.cpp

How is the random seed set in DJANGOH and BeAGLE?

The time is used to set the seed (in djangoh_h.f and dpm_pythia.f):

call idate(today) ! today(1)=day, (2)=month, (3)=year

call itime(now) ! now(1)=hour, (2)=minute, (3)=second

initseed = today(1)+10*today(2)+today(3)+now(1)+5*now(3)

3/10/2021 9

Fix for BeAGLE – directly seed in input file based on
output of /dev/urandom file

3/10/2021 10

Documented here:
https://wiki.bnl.gov/eic/index.php/Simulation

s#High-Statistics_BeAGLE_Simulation

https://wiki.bnl.gov/eic/index.php/Simulations#High-Statistics_BeAGLE_Simulation

BeAGLE output seeds from 10 runs after fix

eAu_0.log: SEED = 14473
eAu_1.log: SEED = 30550
eAu_2.log: SEED = 55545
eAu_3.log: SEED = 4022
eAu_4.log: SEED = 28238
eAu_5.log: SEED = 36662
eAu_6.log: SEED = 12502
eAu_7.log: SEED = 57292
eAu_8.log: SEED = 29721
eAu_9.log: SEED = 37451

3/10/2021 11

Fix for DJANGOH – read in random numbers from an
input text file

3/10/2021 12

➢On the EIC DJANGOH wiki page
(https://wiki.bnl.gov/eic/index.php/DJANGOH), the example input
files have the RNDM-SEEDS parameter set to -1 -1 . When this
default parameter is used, the time sets the random seed as
discussed above, and the seed is passed into the subroutines in
gmc_random.f are used for random number generation.

➢If, however, we set the RNDM-SEEDS parameter to 1 1, then the
generator uses a set of routines from the paper

George Marsaglia, Arif Zaman, Wai Wan Tsang, Toward a universal random number generator,
Statistics & Probability Letters, Volume 9, Issue 1,1990, Pages 35-39

which require a set of numbers from an input text file.

https://wiki.bnl.gov/eic/index.php/DJANGOH

Fix for DJANGOH – read in random numbers from an
input text file

3/10/2021 13

➢According to the paper, the generator requires 97 24-bit fractions (as well as
some other parameters, which can be kept constant) to be taken from a text file.

➢The following Python script can be used to generate the text file prior to running
the DJANGOH simulation. It should be executed in the shell script before running
the generator. (The Python random module should use /dev/urandom to set the
its own seed.)

Potentially better long-term solution – use
/dev/urandom directly in the Fortran generators

Can probably do something like this:

integer :: un, istat

open(newunit=un, file="/dev/urandom", access="stream", &

form="unformatted", action="read", status="old", iostat=istat)

if (istat == 0) then

read(un) seed

close(un)

else

3/10/2021 14

See https://gcc.gnu.org/onlinedocs/gcc-4.8.5/gfortran/RANDOM_005fSEED.html

https://gcc.gnu.org/onlinedocs/gcc-4.8.5/gfortran/RANDOM_005fSEED.html

