CORE: a COmpact detectoR for the EIC

Pawel Nadel-Turonski Stony Brook University

CFNS CORE workshop, March 29-30, 2021

a COmpact detectoR for the Eic (CORE)

COmpact detectoR for Eic (CORE) η<mark>,= 1.00</mark> Ē ×2.5 enoid Coil, Cryostat IBC mBICH dBICH n= 2.00 1.5 0.5 η= 3.00 KLM. Flux-Retu n= 4.00 η = **4.00** η= 3.00 η= 3.00 Β η,= **2.00** -1.5η= 1.00 η = 1.54 z (m)

CORE in Geant (fun4all)

- A (nearly) hermetic general-purpose detector that fulfills the EIC physics requirements
- A small size, in particular of the inner systems, is cost-effective and allows:
 - 1. An overall reduction in cost without performance loss
 - 2. Improved performance in critical areas without large additional cost
- Risk is minimized by utilizing subsystems from the Generic EIC R&D program

Balance can be different in a Detector 1 or 2 proposal

The core of CORE

inner CORE in Geant (fun4all)

- Small solenoid (2.5 m long, 0.9 m inner radius)
 - could be new, but compatible with ZEUS
- Small central all-Si tracker (eRD25)
- Radially compact, high-performance barrel DIRC Cherenkov (eRD14)
- Dual-radiator RICH with outward-reflecting mirrors in the hadron endcap (eRD14)
- Extended PWO₄ EMcal coverage (up to 2π , $\eta < 0$) on the electron side (eRD1)

Solenoid options

- The CORE solenoid is 2.5 m long with a 0.9 m inner radius
- CORE is compatible with any field in the 2-4 T range
- 4 T is affordable due to the small volume of CORE
 - Can be operated at 2 T (better acceptance, hID)
- 2 T is the current low-cost, low-risk baseline option
- Ultimately the choice of field will be a collaboration decision
 - The CORE and ZEUS solenoids have similar dimensions, and the latter could be used for CORE.
 - However, the low cost of a new 2 T solenoid limits the benefits of re-use.

cost (2020 M\$) = 1.8 x 0.458 x (stored energy)^{0.7} M. A. Green and S. J. St. Lorant, Adv. Cryo. Eng. **39**

		volume	2020 cost	with 50%
solenoid	field (T)	(m^3)	(M\$)	contingency
EIC-IP6	3	29	21	32
CORE	4	6.4	11	16
CORE	3	6.4	7	11
CORE	2	6.4	4	6

Central Si-tracker

--> talk by E. Sichtermann

- A silicon tracker is compact, has a high resolution, and offers opportunities for future upgrades.
- The tracker developed by eRD25 would utilize ALICE ITS3 technology and is designed for the angular resolution requirements of the DIRC, making it a good choice for CORE

eRD25 tracker

	ITS2/ALPIDE	ITS3
technology	180 nm	65 nm
pixel-size	27 x 29 µm	10 x 10 µm
thickness	50 µm	20-40 µm

Note: modern microprocessors use 7 nm technology. The (unfair) comparison shows an opportunity for future improvements.

CORE in the context of the Yellow Report

- CORE systems are all designed to provide a cost or performance advantage, or be complementary to the YR reference detector
- A small DIRC, for instance, provides the same performance as a large one, but is cheaper.
- The small size makes CORE particularly suited for improving performance in two key areas: (e-side) electron ID and (h-side) hadronic calorimetry
 - highlighted in the YR "matrix"

 CORE also seeks complementarity with the reference detector by improving muon identification, which would be useful for, *e.g.*, charmonium production and GPD studies using timelike processes.

YR table 10.6 requirement matrix

e/π identification in the electron hemisphere

 $\eta = -\ln(\tan(\theta/2))$

- For the EIC, a clean identification of the scattered electron is essential.
- The YR requirement matrix lists a pion suppression of up to 1:10⁻⁴ for the e-endcap and barrel.
- Since the relative pion background rises at larger (less negative) η, the barrel region poses the greatest challenge and requires the best electron ID.
- However, in the reference detector the best EMcal (PWO₄) only covers the inner endcap ($\eta < -2$).

CORE solution for e/π identification in the electron hemisphere

- CORE addresses the eID issue by extending the PWO₄ EMcal coverage up to $\eta < 0$.
- Additional e/π suppression (at least 1:10 up to 1.2 GeV) is also provided by the DIRC
- The result is a barrel eID configuration that can provide good pion suppression with a high electron efficiency (potentially enabling measurement of A_{PV}).
- A better energy resolution also improves photon detection in the electron hemisphere.

4π EMcal The PANDA PWO₄ EMcal covers the endcap and COmpact detectoR for Eic (CORE) barrel (outside of a DIRC) η,= 1.00 Ē B0 (Dipole), Q1ER, Q1A olenoid Coil. Crvosta DIRC, mRICH, dRICH n= 2.0L 1 0.5 0.5 0.5 0.5 0.5 η= 3.00 η**= 4.00** η<mark>= 4.00</mark> η= 2.00 -1.5η= 1.00 η**= 1.54** z (m)

up to 2π ($\eta < 0$) PWO₄ coverage --> *talk by C. Munoz Camacho*

- The small size of CORE makes it affordable to extend the PWO₄ coverage up to 2π .
 - The PWO₄ area will be half or less of that planned for PANDA, which is similar in size to CORE
- An additional small-angle EMcal can be placed behind the main detector endcap

 $\eta > 0$ coverage (several options – including pre-showers for γ/π^0)

- The η > 0 barrel EMcal should be relatively compact and projective
- The endcap EMcal needs to be affordable and work well with a high-resolution Hcal

--> talk by C. Woody

CORE 2π PWO₄ EMcal superimposed on the YR reference detector

YR table 10.6 requirement matrix

Hadronic calorimetry

--> talk by O. Tsai

- The inner part of CORE is independent of the Hcal configuration.
- But the smaller size of CORE makes a high-resolution Hcal in the hadron endcap (η > 2) a particularly interesting option.
- This would have a significant impact on measurements of jets where the energies are highest and tracking is least efficient

- In the barrel and electron endcap, jet energies are lower and jets are best reconstructed from individual tracks (tracking, PID, EMcal).
- Here, the Hcal is mainly used for individual low-momentum neutral hadrons (mostly K_L). Resolution has a more limited impact.

Muon ID

The Belle II K_L- μ (KLM) system

- At the EIC, mid-rapidity muons have relatively low momenta, and it is important to minimize multiple scattering (placing a muon detector behind an Hcal is not feasible).
- Since jets are best reconstructed from individual tracks, one approach is to trade energy resolution for better muon and neutral hadron (K_L) ID, and lower cost (*cf.* Belle II KLM)

--> talk by W. Jacobs

 One can also try to enhance the muon ID capability of a more conventional barrel Hcal, or improve the energy resolution of a KLM-inspired system
 --> talk by O. Tsai

Hadron Identification in the barrel (hpDIRC) and hadron endcap (dRICH)

- The hpDIRC has a π/K separation of >4σ up to 6 GeV (and 2σ at 8 GeV).
 - The minimum
 momentum for π/K
 ID in threshold
 mode is 0.2 GeV

--> talk by E. Cisbani, M. Contalbrigo

- Using aerogel and gas radiators with a single set of photosensors the dRICH provides *continuous* π/K separation of >3 σ up to 60 GeV and an excellent e/π separation (no TRD needed).
 - e/π: 10σ at 10 GeV 13

TOF in the hadron endcap

CORE with a dual-radiator RICH (eRD14)

 The dual-radiator RICH (dRICH) is a costeffective solution with continuous coverage over a wide momentum range, but a simple TOF system could provide PID for the lowest momenta below the aerogel thresholds.

CORE with a gas-only RICH (eRD6) and LGAD-based TOF behind it

 However, pending the implementation of the dRICH in fun4all, Geant simulations can start using a gas-only RICH in combination with high-resolution LGAD TOF, which is already implemented

Hadron Identification in the electron endcap

- While high-resolution TOF is not competitive with Cherenkov detectors in the central barrel (small radius), it could be a good solution for the electron endcap.
- t₀ can be obtained using an electron scattered into the endcap and/or a separate "start" layer integrated with the Si-tracker.
- The TOF installation is modest and resolution could improve through future upgrades.
- Alternatively, CORE could also support an aerogel RICH (*e.g.*, the mRICH) by extending the endcap by 30 cm, for which there is plenty of space - although this would also extend the length of the PWO₄ EMcal.

--> talk by G. Giacomini

Complementarity?

Future upgrades – a few examples

- Rapidly evolving technologies create natural upgrade paths
 - Photosensors, Si-timing, S-tracking, optical meta materials, etc.
- Advances in photosensor timing beyond 100 ps rms can in the shorter term increase the momentum reach of the DIRC; SiPMs could provide tolerance to very high magnetic fields.
- The next generation of Si-trackers could improve position (momentum) resolution, readout speed, and further reduce mass.
- At the time of an EIC mid-life upgrade, optical metamaterials might be available for use as Cherenkov radiator, greatly improving momentum reach for compact PID systems.
 - Pioneering studies at SBU as part of eRD6

Thank you!

IR integration

- Despite its compact size, CORE has a lot of room available for supports and services
- In its nominal configuration, CORE fits into a -3 m to +4.5 m IR space.

YR requirement matrix

YR table 10.6

n	n				Tracking	Electrons and Photons			π/К/р НСА				Muone					
Paste	1	Nomenc	ature	e Resolution Allowed minimum-pT		Si-Vertex	Resolution σ∈/E PID min E		p-Range Se parati		Resolution σ_E/E Energy		Muons					
-6.9 to -5.8			low-Q2 tagger	σθ/θ < 1.5%; 10-6 < Q2 < 10-2 GeV2														
-5.0 to -4.5	1					300 MeV pions												
-4.5 to -4.0			Instrumentation to separate charged particles from photons			300 MeV pions		2%/√E(+1-3%)		50 MeV								
-4.0 to -3.5	↓ p/A	Auxiliary De								50 MeV			~50%/√E + 6%					
-3.5 to -3.0	4									50 MeV			~45%/√E+6%		1 -			
-3.0 to -2.5 -2.5 to -2.0 -2.0 to -1.5	-		<u>Backward</u> Detector	σрТ/рТ~ 0.1%⊕0.5% σрТ/рТ σрТ/рТ			σ_xy~30/pT μm +40 μm σ_xy~30/pT μm +20 μm	2%/√E(+1-3%) 7%/√E(+1-3%)	π suppres	50 MeV 50 MeV 50 MeV	. ≤ 7 GeV/c				muons useful for bkg.			
-1.5 to -1.0	4			0.05%⊕0.5%			7%	7%/√E(+1-3%)	to 1:1E-	50 MeV		-			improve			
-1.0 to -0.5	-	Central	<u>Barrel</u>	σрТ/рТ ~0.05%×рТ+0.5%	~5% or		σxyz ~ 20 μm, d0(z) ~d0(rΦ) ~ 20/pTGeV		4	50 MeV	eV ≤ 10 GeV/c	≥3 σ	~85%/√E+7% ~85%/√E+7%	~500	resolution			
0.0 to 0.5	-	Detector			less X		μm + 5 μm			50 MeV	< 15 CoV/o	-	~85%/VE+7%	Mev	1 -			
1.0 to 1.5	1										-		50 MeV	< 30 GeV/c	1	~8376/3E+776		<u> </u>
1.5 to 2.0	1			σρΤ/ϼΤ		<100MeV pions, 135MeV kaons	σ_xy~30/pT μm			50 MeV	20000000	1						
2.0 to 2.5	1			~0.05%×pT+1.0% σpT/pT ~ 0.1%×pT+2.0%		-	+20 μm			50 MeV	≤ 50 GeV/c		35%/√E					
2.5 to 3.0							σ_xy~30/pTμm +40μm	(10- 12)%/√E(+1-	3σ е/π	50 MeV	≤ 30 GeV/c							
3.0 to 3.5				0.170-01-2.070			σ_xy~30/p1 μm +60 μm	3%)		50 MeV	≤ 45 GeV/c							
3.5 to 4.0			Instrumentation to separate charged particles from photons	Tracking capabilities are desirable for forward tagging						50 MeV								
4.0 to 4.5	Λe	Auxiliary								50 MeV			35%/√E (goal),					
4.5 to 5.0		Detectors	Neutron Detection			300 MeV pions		4.5%/√E for photon energy > 20 GeV	<= 3 cm granular ity	50 MeV			<50%/√E (acceptable)*, 3mrad/√E (goal)					
>6.2			Proton Spectrometer	ointrinsic(t)/ t < 1%; Acceptance: 0.2 < pt < 1.2 GeV/c														

YR detector subsystem matrix

YR table 11.50

					Tracking						Electrons and Photons			π/К/р		HCAL																						
η	θ		Nomencl	ature	Resolution	Relative Momentum	Allowed X/X _O	Minimum-pT	Transverse Pointing Res.	Longitudinal Pointing Res.	Resolution σ _E /E	PID	Min E Photon	p-Range (GeV/c)	Separation	Resolution σ _E /E	Energy	Muons																				
< -4.6			Far Backward Detectors	low-Q2 tagger																																		
-4.6 to -4.0		↓ p/A				Not Accessible																																
-4.0 to -3.5						Reduced Performance																																
-3.5 to -3.0						<u>a^b(b</u>					10/15 (5 3 50/1																											
-3.0 to -2.5						<u>~0.2%×p⊕5%</u>		70-150			<u>1%/E ⊕ 2.5%/</u> √E ⊕ 1%	up to 1:1E-4	20 MeV																									
-2.5 to -2.0				Backward Detector				MeV/c (B=1.5						<u>≤ 10 GeV/c</u>		50%/		Musee																				
-2.0 to -1.5							<u>σp/p</u> ~		I)	dca(xy) -	<u>dca(z) -</u>	<u>2%/E⊕(4-</u>	TT suppression	FO May					for bkg.																			
-1.5 to -1.0																					0.04%×pt+2%			<u>40/pi μm θ</u> <u>10 μm</u>	<u>20 μm</u>	<u>8)%/√E ⊕ 2%</u>	<u>up to I:(IE-3 -</u> <u>IE-2)</u>	<u>50 Mev</u>					improve					
-1.0 to -0.5																															1							
-0.5 to 0.0			Central	ntral <u>Barrel</u>		⊈ <u>p</u> /₽ <u>~0.04%×p⊕1%</u>	2 -5% or less X 200 M		<u>dca(xy) ~</u>	dca(z) ~ 30/pT	<u>2%/E⊕(12-</u> 14)%/√E⊕(2- 3)%	TT suppression	to 1:1E-2	<u>≤ 6 GeV/c</u>	<u>≥3</u> σ	<u>100%/</u> <u>√E+10%</u>	<u>~500MeV</u>																					
0.0 to 0.5			Detector					200 MeV/c	<u>30/pT μm ⊕</u> 5 μm	<u>μm ⊕ 5 μm</u>		up to 1:1E-2																										
0.5 to 1.0																																						
1.0 to 1.5												1		<u>dca(xy) ~</u>	dea(z) a					1																		
1.5 to 2.0											<u>σ_p/p</u>		70 - 150	<u>40/pT μm ⊕</u> 10 μm	<u>100/pT µm ⊕</u>	2%/F @																						
2.0 to 2.5																							Forward Detectors				<u>MeV/c (B = 1.5</u>		<u>20 μm</u>	<u>(4*-12)%/√E</u>	3σ e/π up to 15 GeV/c 50 Me	<u>50 MeV</u>	<u>) MeV</u> ≤ 50 GeV/c		50%/			
2.5 to 3.0																										gn/p	1 !	D			. <u>⊕.2%</u>	Gevic	1			<u>VE+10%</u>		
3.0 to 3.5																																<u>-0.2%×p⊕5%</u>					1	
3.5 to 4.0				Instrumentation to separate charged particles from photons		Reduced Performance																																
4.0 to 4.5		↑e									Not Accessible																											
			E. E. Hard	Proton Spectrometer																																		
> 4.6			Detectors	Zero Degree Neutral Detection																																		