Dark matter going nuclear: the role of bound states in thermal decoupling

Kallia Petraki

Sorbonne University, LPTHE, Paris and Nikhef, Amsterdam

Dark matter production in the early universe Why do we care?

Production depends on the couplings of DM to other particles, which are the very probes of the DM properties

Thermal freeze-out

$$T > m_{\rm DM}$$

DM kept in chemical & kinetic equilibrium with the plasma, via

$$X + \overline{X} \leftrightarrow f + \overline{f}$$

$$n_{\rm DM} \sim T^3$$
 or $Y_{\rm DM} = {\rm constant}$

$$T < m_{DM}$$

 $Y_{\rm DM} \propto \exp(-m_{\rm DM}/T)$, while still in equilibrium

$$T < m_{_{\rm DM}} / 25$$

Density too small, annihilations stall ⇒ Freeze-out!

$$\Omega \simeq 0.26 imes \left(rac{1pb \cdot c}{\sigma_{
m ann} v_{
m rel}}
ight)$$

1 pb ~ σ_{Weak} WIMP miracle!

WIMPs and variations

Weakly coupled to SM via W[±], Z, H e.g. LSP in SUSY

or

weakly coupled to SM via non-SM interactions,

$$e.g. \delta L = \frac{\bar{X} \gamma^{\mu} X \bar{q} \gamma_{\mu} q}{\Lambda^{2}}$$

or

weakly coupled to light dark-sector particles that couple (feebly) to SM,

e.g. DM coupled to dark photon kinetically mixed with Hypercharge

WIMPs and variations

Weakly coupled to SM via W[±], Z, H e.g. LSP in SUSY

or

weakly coupled to SM via non-SM interactions,

$$e.g. \delta L = \frac{\bar{X} \gamma^{\mu} X \bar{q} \gamma_{\mu} q}{\Lambda^{2}}$$

or

weakly coupled to light dark-sector particles that couple (feebly) to SM,

e.g. DM coupled to dark photon kinetically mixed with Hypercharge

WIMPs and variations

Weakly coupled to SM via W[±], Z, H e.g. LSP in SUSY

or

weakly coupled to SM via non-SM interactions,

$$e.g. \delta L = \frac{\bar{X} \gamma^{\mu} X \bar{q} \gamma_{\mu} q}{\Lambda^{2}}$$

or

weakly coupled to light dark-sector particles that couple (feebly) to SM,

e.g. DM coupled to dark photon kinetically mixed with Hypercharge

Significant constraints.

No discovery so far.

What now?

Diversify dark matter searches

Heavier DM

Particles with m ≥ TeV coupled to SM via the Weak or other interactions not constrained by collider experiments

→ existing and upcoming telescopes observing multi-TeV sky with increasing sensitivity, e.g. HESS, IceCube, CTA, Antares

see e.g. 2008.00692: WIMP prospects with CTA Rinchiuso, Macias, Moulin, Rodd, Slatyer

Lighter DM

Particles with m ≤ few GeV, possibly coupled to SM via a portal interaction, not constrained by older direct detection experiments

→ development of new generation of direct detection experiments

11/6

- Simple thermal-relic WIMP models live in the (multi-)TeV scale.
- Thermal-relic DM can be as heavy as few \times 100 TeV.

How heavy can thermal-relic DM be, and what are the underlying dynamics of heavy (≥ TeV) thermal-relic DM?

Heavier

Particles with m ≥ Te to Sw via the weak or other interactions not con a by collider experiments

→ existing and upcoming telescopes observing multi-TeV sky with increasing sensitivity, e.g. HESS, IceCube, CTA, Antares

see e.g. 2008.00692: WIMP prospects with CTA Rinchiuso, Macias, Moulin, Rodd, Slatyer

Lighter DM

Particles with m ≤ few GeV, possibly coupled to SM via a portal interaction, not constrained by older direct detection experiments

→ development of new generation of direct detection experiments

Long-range interactions

$$\lambda_B \, \sim \, rac{1}{\mu v_{
m rel}}, \, rac{1}{\mu lpha} \, \, \lesssim \, \, rac{1}{m_{
m mediator}} \sim {
m interaction \, range}$$

 μ : reduced mass $(m_{\scriptscriptstyle {
m DM}}/2)$

Long-range interactions

Motivation

$$\lambda_B \, \sim \, rac{1}{\mu v_{
m rel}}, \, rac{1}{\mu lpha} \, \lesssim \, rac{1}{m_{
m mediator}} \! \sim \! {
m interaction \; range}$$
 $\mu \! : \; {
m reduced \; mass} \; (m_{\scriptscriptstyle {
m DM}}/2)$

- Self-interacting DM
- DM explanations of astrophysical anomalies,
 e.g. galactic positrons, IceCube PeV neutrinos
- Sectors with stable particles in String Theory
- WIMP DM with m_{DM} > few TeV. [Hisano et al. 2002]
- WIMP DM with m_{DM} < TeV, in scenarios of DM co-annihilation with coloured partners.

Implications of long-range interactions

Sommerfeld effect

distortion of scattering-state wavefunctions

- Affects freeze-out ⇒ changes correlation of parameters (mass – couplings)
- Affects indirect detection signals
 - rates
 - velocity dependence
 - parametric resonances

Implications of long-range interactions

Sommerfeld effect

distortion of scattering-state wavefunctions

- Affects freeze-out ⇒ changes correlation of parameters (mass – couplings)
- Affects indirect detection signals
 - rates
 - velocity dependence
 - parametric resonances

Bound states

- Unstable bound states
 ⇒ extra annihilation channel
 - Freeze-out
 - Indirect detection (different velocity dependence, resonances than annihilation)
 - Novel low-energy indirect detection signals
- Stable bound states (particularly important for asymmetric DM)
 - Novel low-energy indirect detection signals
 - Affect DM self-interactions (screening)
 - Inelastic scattering in direct detection experiments (?)

1. Dark U(1) sector

Thermal freeze-out with long-range interactions

Dark U(1) model: Dirac DM X, \overline{X} coupled to γ_{D}

$$egin{aligned} S_{
m ann} &\simeq \left(rac{2\pi\zeta}{1-e^{-2\pi\zeta}}
ight) & \stackrel{\zeta\gtrsim 1}{\longrightarrow} & 2\pi\zeta \ S_{
m BSF} &\simeq \left(rac{2\pi\zeta}{1-e^{-2\pi\zeta}}
ight) rac{2^9\zeta^4e^{-4\zeta{
m arccot}\zeta}}{3(1+\zeta^2)^2} & \stackrel{\zeta\gtrsim 1}{\longrightarrow} & 3.13 imes 2\pi\zeta \end{aligned}$$

Thermal freeze-out with long-range interactions Dark U(1) model: Dirac DM X,\overline{X} coupled to γ_{D}

Thermal freeze-out with long-range interactions Dark U(1) model: Dirac DM X, \overline{X} coupled to γ_{D}

Every mediator exchange introduces an $\alpha = g^2/(4\pi)$ suppression in the amplitude. How did we get an enhancement and bound states?

Bound-state ladder

Every mediator exchange introduces an $\alpha = g^2/(4\pi)$ suppression in the amplitude. How did we get an enhancement and bound states?

Bound-state ladder

Energy and momentum exchange scale with $\alpha!$

- Momentum transfer: $|\vec{q}| \sim \mu \alpha$.
- Energy transfer: $q^0 \sim |\vec{q}|^2/\mu \sim \mu \alpha^2$.
- Off-shellness of interacting particles: $q^0 \sim |\vec{q}|^2/\mu \sim \mu \alpha^2$.

one boson exchange
$$\sim \alpha imes rac{1}{(\mu \alpha)^2} \propto rac{1}{\alpha}$$
 each added loop $\sim \alpha imes \int dq^0 d^3q \ rac{1}{q_1 - m_1} rac{1}{q_2 - m_2} \ rac{1}{q_\gamma^2}$ $\sim \alpha imes (\mu \alpha^2) (\mu \alpha)^3 \ rac{1}{\mu \alpha^2} rac{1}{\mu \alpha^2} rac{1}{(\mu \alpha)^2}$ ~ 1

Every mediator exchange introduces an $\alpha = g^2/(4\pi)$ suppression in the amplitude. How did we get an enhancement and bound states?

Bound-state ladder

Energy and momentum exchange scale with $\alpha!$

- Momentum transfer: $|\vec{q}| \sim \mu \alpha$.
- Energy transfer: $q^0 \sim |\vec{q}|^2/\mu \sim \mu \alpha^2$.
- Off-shellness of interacting particles: $q^0 \sim |\bar{q}|$

1/α scaling responsible for non-perturbative effects (not largeness of coupling)

one boson exchange
$$\sim \alpha imes rac{1}{(\mu\alpha)^2} \propto rac{1}{\alpha}$$
 each added loop $\sim \alpha imes \int dq^0 d^3q \, rac{1}{q_1-m_1} rac{1}{q_2-m_2} \, rac{1}{q_\gamma^2}$ $\sim \alpha imes (\mu\alpha^2)(\mu\alpha)^3 \, rac{1}{\mu\alpha^2} \, rac{1}{(\mu\alpha)^2} \, rac{1}{(\mu\alpha)^2}$ ~ 1

Every mediator exchange introduces an $\alpha = g^2/(4\pi)$ suppression in the amplitude. How did we get an enhancement and bound states?

Energy and momentum exchange scale with both α and $v_{\rm rel}$!

 $\mu v_{\rm rel}$ is the expectation value of the momentum in CM frame, the quantum uncertainty scales with α .

The Sommerfeld effect appears when quantum uncertainty \sim expectation value.

2. Unitarity limit and long-range interactions

$$S^\dagger S = 1 \quad \stackrel{S=1+iT}{\longrightarrow} \quad -i(T-T^\dagger) = T^\dagger T$$

Project on a partial wave and insert complete set of states on RHS

$$m{\sigma_{
m inel}^{(\ell)}} \leqslant rac{\pi(2\ell+1)}{k_{
m cm}^2} \quad \stackrel{
m non-rel}{
ightarrow} \quad rac{\pi(2\ell+1)}{\mu^2 v_{
m rel}^2} \quad \stackrel{\mu=M_{
m DM}/2}{
ightarrow} \quad rac{4\pi(2\ell+1)}{M_{
m DM}^2 v_{
m rel}^2}$$

[Griest, Kamionkowski (1990); Hui (2001)]

Physical meaning: saturation of probability for inelastic scattering

$$oxed{\sigma_{
m inel}^{(\ell)} v_{
m rel} \ \leqslant \ \sigma_{
m uni}^{(\ell)} v_{
m rel} \ = \ rac{4\pi (2\ell+1)}{M_{
m \scriptscriptstyle DM}^2 v_{
m rel}}}$$

Implies upper bound on the mass of thermal-relic DM

Griest, Kamionkowski (1990)

$$egin{aligned} \sigma_{
m ann} v_{
m rel} &\simeq 2.2 imes 10^{-26} {
m \, cm^3/s} &\leqslant rac{4\pi}{M_{
m DM}^2 v_{
m rel}} \ &\langle v_{
m rel}^2
angle^{1/2} = (6T/M_{
m DM})^{1/2} & \stackrel{
m freeze-out}{\longrightarrow} 0.49 \ & & M_{
m DM}/T pprox 25 \end{aligned} 0.49 \ \Rightarrow M_{
m uni} \simeq egin{cases} 117 {
m \, TeV}, & {
m self-conjugate \, DM} \ & {
m \, non-self-conjugate \, DM} \end{aligned}$$

$$oxed{\sigma_{
m inel}^{(\ell)} v_{
m rel} \ \leqslant \ \sigma_{
m uni}^{(\ell)} v_{
m rel} \ = \ rac{4\pi (2\ell+1)}{M_{
m \scriptscriptstyle DM}^2 v_{
m rel}}}$$

Implies upper bound on the mass of thermal-relic DM

Griest, Kamionkowski (1990)

$$\sigma_{
m ann} v_{
m rel} ~\simeq~ 2.2 imes 10^{-26} {
m ~cm^3/s} ~\leqslant rac{4\pi}{M_{\scriptscriptstyle
m DM}^2 v_{
m rel}}$$

$$\langle v_{
m rel}^2
angle^{1/2} = (6T/M_{
m \scriptscriptstyle DM})^{1/2} \quad {
m freeze-out} {
m \rightarrow} \quad 0.49$$

Two assumptions to be questioned

- 1. "one does not expect $\sigma v_{
 m rel} \propto 1/v_{
 m rel}$ for annihilation channels in a non-relativistic expansion."
- 2. The s-wave yields the dominant contribution to the annihilation cross-section.

$$oxed{\sigma_{
m inel}^{(\ell)} v_{
m rel} \ \leqslant \ \sigma_{
m uni}^{(\ell)} v_{
m rel} \ = \ rac{4\pi (2\ell+1)}{M_{
m \scriptscriptstyle DM}^2 v_{
m rel}}}$$

1) Velocity dependence of σ_{uni}

- Assuming $\sigma_{ann}v_{rel}$ = const., setting it to maximal (inevitably for a fixed v_{rel}) and thermal averaging formally incorrect!
 - \Rightarrow Unitarity violation at larger v_{rel} , non-maximal cross-section at smaller v_{rel} .
- Sommerfeld-enhanced inelastic processes exhibit exactly this velocity dependence at large couplings / small velocities, e.g. in QED

$$\sigma_{
m ann}^{\ell=0} v_{
m rel} \; \simeq \; rac{\pi lpha_D^2}{M_{
m \scriptscriptstyle DM}^2} imes rac{2\pi lpha_D/v_{
m rel}}{1-\exp(-2\pi lpha_D/v_{
m rel})} \; \stackrel{lpha_D \gg v_{
m rel}}{
ightarrow} \; rac{2\pi^2 lpha_D^3}{M_{
m \scriptscriptstyle DM}^2 v_{
m rel}}$$

 \Rightarrow Velocity dependence of σ_{uni} definitely *not* unphysical!

$$oxed{\sigma_{
m inel}^{(\ell)}v_{
m rel}\ \leqslant\ \sigma_{
m uni}^{(\ell)}v_{
m rel}\ =\ rac{4\pi(2\ell+1)}{M_{
m \scriptscriptstyle DM}^2v_{
m rel}}}$$

Parametric 1) Velocity dependence of σ_{uni}

What can we learn?

For a contact-type interaction, mediated by heavy particle with $m_{\mathrm{med}} \gtrsim M_{\scriptscriptstyle \mathrm{DM}},$

$$\sigma_{
m ann} v_{
m rel} \sim rac{lpha_{\scriptscriptstyle D}^2 M_{\scriptscriptstyle {
m DM}}^2}{m_{
m med}^4} \; \lesssim \; rac{4\pi}{M_{\scriptscriptstyle {
m DM}}^2 v_{
m rel}}.$$

Approaching unitarity limit requires large coupling (no surprise)

$$lpha_{\scriptscriptstyle D} \sim m_{
m med}^4/M_{\scriptscriptstyle {
m DM}}^4 \gtrsim 1$$
 .

Calculation violates unitarity if

$$m_{
m med} < lpha_{\scriptscriptstyle D}^{1/2} M_{\scriptscriptstyle {
m DM}} \lesssim lpha_{\scriptscriptstyle D} M_{\scriptscriptstyle {
m DM}}.$$

Comparison between physical scales ⇒ violation signals new effect at play!

$$oxed{\sigma_{
m inel}^{(\ell)} v_{
m rel} \ \leqslant \ \sigma_{
m uni}^{(\ell)} v_{
m rel} \ = \ rac{4\pi (2\ell+1)}{M_{
m \scriptscriptstyle DM}^2 v_{
m rel}}}$$

Parametric 1) Velocity dependence of σ_{uni}

What can we learn?

For a contact-type interaction, mediated by heavy particle with $m_{\mathrm{med}} \gtrsim M_{\scriptscriptstyle \mathrm{DM}},$

$$\sigma_{
m ann} v_{
m rel} \sim rac{lpha_{\scriptscriptstyle D}^2 M_{\scriptscriptstyle {
m DM}}^2}{m_{
m med}^4} \ \lesssim \ rac{4\pi}{M_{\scriptscriptstyle {
m DM}}^2 v_{
m rel}}.$$

Approaching unitarity limit requires large coupling (no surprise)

$$lpha_{\scriptscriptstyle D} \sim m_{
m med}^4/M_{\scriptscriptstyle {
m DM}}^4 \gtrsim 1$$
 .

Calculation violates unitarity if

$$m_{
m med} < lpha_{\scriptscriptstyle D}^{1/2} M_{\scriptscriptstyle {
m DM}} \lesssim lpha_{\scriptscriptstyle D} M_{\scriptscriptstyle {
m DM}}.$$

Comparison between physical scales ⇒ violation signals new effect at play!

Including the Sommerfeld enhancement, for a light mediator, e.g. dark QED

$$\sigma_{
m ann} v_{
m rel} \simeq rac{2\pi^2 lpha_{\scriptscriptstyle D}^3}{M_{\scriptscriptstyle {
m DM}}^2 v_{
m rel}} \ \lesssim \ rac{4\pi}{M_{\scriptscriptstyle {
m DM}}^2 v_{
m rel}}.$$

Unitarity indicates range of validity

$$\alpha_D \lesssim 0.86$$

Only numerical bound on a dimensionless coupling

⇒ include (resummed) higher order corrections

$$oxed{\sigma_{
m inel}^{(\ell)} v_{
m rel} \ \leqslant \ \sigma_{
m uni}^{(\ell)} v_{
m rel} \ = \ rac{4\pi (2\ell+1)}{M_{
m \scriptscriptstyle DM}^2 v_{
m rel}}}$$

1) Velocity dependence of σ_{uni}

Proper thermal average and taking into account delayed chemical decoupling

$$oxed{\sigma_{
m inel}^{(\ell)} v_{
m rel} \ \leqslant \ \sigma_{
m uni}^{(\ell)} v_{
m rel} \ = \ rac{4\pi (2\ell+1)}{M_{
m \scriptscriptstyle DM}^2 v_{
m rel}}}$$

2) Higher partial waves

In direct annihilation processes, s-wave dominates.

• For contact-type interactions, higher ℓ are $v_{\rm rel}^{2\ell}$ suppressed:

$$\sigma_{
m ann} v_{
m rel} = \sum_{\ell} \sum_{r=0}^{\infty} c_{\ell r} \, rac{v_{
m rel}^{2\ell+2r}}{}$$

• For long-range interactions:

$$egin{aligned} \sigma_{Xar{X} o VV}^{(\ell=0)}v_{
m rel} &\simeq rac{\pilpha_D^2}{M_{
m DM}^2} imes \left(rac{2\pilpha_D/v_{
m rel}}{1-e^{-2\pilpha_D/v_{
m rel}}}
ight) & \stackrel{lpha_D\gg v_{
m rel}}{\longrightarrow} rac{2\pi^2lpha_D^3}{M_{
m DM}^2v_{
m rel}} \ \sigma_{Xar{X} o SS}^{(\ell=1)}v_{
m rel} &\simeq rac{3\pilpha_D^2}{8M_{
m DM}^2}v_{
m rel}^2 imes \left(rac{2\pilpha_D/v_{
m rel}}{1-e^{-2\pilpha_D/v_{
m rel}}}
ight) \left(1+rac{lpha_D^2}{v_{
m rel}^2}
ight) & \stackrel{lpha_D\gg v_{
m rel}}{\longrightarrow} rac{6\pi^2lpha_D^5}{8M_{
m DM}^2v_{
m rel}} \ \end{array}$$

Same $v_{\rm rel}$ scaling (as expected from unitarity!), albeit $v_{\rm rel}^2 \to \alpha_D^2$ suppression.

$$\sigma_{
m inel}^{(\ell)} v_{
m rel} \ \leqslant \ \sigma_{
m uni}^{(\ell)} v_{
m rel} \ = \ rac{4\pi (2\ell+1)}{M_{
m \scriptscriptstyle DM}^2 v_{
m rel}}$$

2) Higher partial waves

In direct annihilation processes, s-wave dominates.

However, DM may annihilate via formation and decay of bound states. The bound-state ladder reduces the order of the diagram!

$$\sigma_{
m ann}^{(\ell=0)}v_{
m rel} \stackrel{lpha_D\gg v_{
m rel}}{\longrightarrow} rac{2\pi^2lpha_D^3}{M_{
m DM}^2v_{
m rel}} rac{2\pi^2lpha_D^3}{M_{
m DM}^2v_{
m rel}} rac{1}{1} rac{2\pi^2lpha_D^3}{M_{
m DM}^2v_{
m rel}} rac{1}{1} rac{2\pi^2lpha_D^3}{M_{
m DM}^2v_{
m rel}} rac{1}{1} rac{1} rac{1}{1} rac{1} rac{1}{1} rac{1}{1} rac{1}{1} rac{1}{$$

Both s- and p- wave saturate their unitarity limit at $\alpha_D \approx 0.86$.

 \Rightarrow Consider combined bound on DM mass, $M_{uni} \simeq 276 \text{ TeV}$

$$\sigma_{
m inel}^{(\ell)} v_{
m rel} \ \leqslant \ \sigma_{
m uni}^{(\ell)} v_{
m rel} \ = \ rac{4\pi (2\ell+1)}{M_{
m \scriptscriptstyle DM}^2 v_{
m rel}}$$

2) Higher partial waves

In direct annihilation processes, s-way

Higher partial waves important for DM depletion in the early universe ⇒ higher *M*_{uni}

However, DM may annihilate via formation and decay of bound states. The bound-state ladder reduces the order of the diagrams

$$\sigma_{
m ann}^{(\ell=0)}v_{
m rel} \stackrel{lpha_D\gg v_{
m rel}}{\longrightarrow} rac{2\pi^2lpha_D^3}{M_{
m DM}^2v_{
m rel}} rac{2\pi^2l$$

Both s- and p- wave saturate their unitarity limit at $\alpha_D \approx 0.86$. \Rightarrow Consider combined bound on DM mass, $M_{uni} \approx 276 \text{ TeV}$

$$\sigma_{
m inel}^{(\ell)} v_{
m rel} \ \leqslant \ \sigma_{
m uni}^{(\ell)} v_{
m rel} \ = \ rac{4\pi (2\ell+1)}{M_{
m \scriptscriptstyle DM}^2 v_{
m rel}}$$

Can be approached or realised only in models with attractive long-range interactions

Generic conclusion:

In viable thermal-relic DM scenarios, expect long-range behaviour at $m_{DM} \gtrsim \text{few TeV!}$

- Implications for all experimental probes:
 DM mass and/or couplings different than otherwise estimated.
- Indirect detection in the multi-TeV regime: non-perturbative effects (Sommerfeld, BSF) must be considered

Cirelli, Panci, KP, Sala, Taoso 1612.07295 Baldes, KP 1703.00478 Baldes, Cirelli, Panci, KP, Sala, Taoso 1712.07489 Cirelli, Gouttenoire, KP, Sala 1811.03608

What about WIMPs?

- Long-range condition: $\alpha_2 M_{DM} \gtrsim m_W \Rightarrow M_{DM} \gtrsim 3 \text{ TeV}$
- Long-range effects more important for DM in higher SU_L(2) multiplets
 - Pure 3-plet (Wino-like): M_{DM}~ 3 TeV, only Sommerfeld important.
 - Pure 5-plet: M_{DM}~ 14 TeV, Sommerfeld & bound states important.
- Mixed multiplet and coannihilation scenarios: more complexity
 - Neutralino-squark co-annihilation
 - Higgs-portal models

3. Neutralino-squark co-annihilation scenarios

Neutralino in SUSY models

Squark-neutralino co-annihilation scenarios

- Degenerate spectrum → soft jets → evade LHC constraints
- Large stop-Higgs coupling reproduces measured Higgs mass and brings the lightest stop close in mass with the LSP
 - ⇒ DM density determined by "effective" Boltzmann equation

$$n_{\rm tot} = n_{\rm _{LSP}} + n_{\rm _{NLSP}}$$

$$\sigma_{\rm ann}^{\rm eff} = [\,n_{\rm _{LSP}}^2\,\sigma_{\rm ann}^{\rm _{LSP}} + n_{\rm _{NLSP}}^2\,\sigma_{\rm ann}^{\rm _{NLSP}} + n_{\rm _{LSP}}\,n_{\rm _{NLSP}}\,\sigma_{\rm ann}^{\rm _{LSP-NLSP}}\,]/n_{\rm tot}^2$$

Scenario probed in colliders.
Important to compute DM density accurately!

→ QCD corrections

QCD corrections to stop annihilation

[Klasen+ (since 2014), DM@NLO]

QCD loop corrections

Gluon emission

Sommerfeld effect

broadly, the most important

QCD corrections to stop annihilation

[Klasen+ (since 2014), DM@NLO]

QCD loop corrections

Sommerfeld effect

broadly, the most important

Gluon emission

$$egin{aligned} \mathcal{L} &\supset &rac{1}{2}\overline{\chi^c}\,i entallow{\chi}-rac{1}{2}m_\chi\,\overline{\chi^c}\chi \ &+&\left[\left(\partial_\mu+ig_sG_\mu^aT^a
ight)X
ight]^\dagger\left[\left(\partial^\mu+ig_sG^{a,\mu}T^a
ight)X
ight]-m_X^2|X|^2 \ &+&\left(\chi\leftrightarrow X,X^\dagger
ight) ext{ interactions in chemical equilibrium during freeze-out} \end{aligned}$$

Long-range interaction

$$\hat{\mathbf{R}} \left\{ \begin{array}{c} X_{[\mathbf{R}]} \\ \\ & \\ & \\ X_{[\hat{\mathbf{R}}]} \end{array} \right. \\ \\ \mathbf{R} \otimes \bar{\mathbf{R}} = \sum_{\hat{\mathbf{R}}} \hat{\mathbf{R}} = 1 \oplus \operatorname{adj} + \cdots \\ \\ V(r) = -\alpha_{g,[\hat{\mathbf{R}}]} / r \\ \\ \alpha_{g,[\hat{\mathbf{R}}]} = \alpha_s \times \left[C_2(\mathbf{R}) - C_2(\hat{\mathbf{R}}) / 2 \right] \\ \\ \mathbf{W} \text{here } \alpha_s = g_s^2 / (4\pi) \end{array} \right. \quad \text{for SU(3)} \\ \\ 3 \otimes \bar{\mathbf{3}} = 1 \oplus 8 \\ \\ \alpha_{g,[1]} = + (4/3)\alpha_s \quad \operatorname{attractive} \\ \\ \alpha_{g,[8]} = - (1/6)\alpha_s \quad \operatorname{repulsive} \\ \\ \text{with } \alpha_s \sim 0.1 \quad \operatorname{at} \quad m_X \sim \operatorname{TeV} \\ \end{array}$$

Bound-state formation and decay

Harz, KP 1805.01200: Cross-sections for radiative BSF in non-Abelian theories

Bound-state formation vs Annihilation

Harz, KP 1805.01200: Cross-sections for radiative BSF in non-Abelian theories

In agreement with Brambilla, Escobedo, Ghiglieri, Vairo 1109.5826: Gluo-dissociation of quarkonium in pNRQCD

Harz, KP: 1805.01200

Harz, KP: 1805.01200

4. The SM Higgs as a light mediator

Neutralino in SUSY models

Squark-neutralino co-annihilation scenarios

- Degenerate spectrum → soft jets → evade LHC constraints
- Large stop-Higgs coupling reproduces measured Higgs mass and brings the lightest stop close in mass with the LSP
 - ⇒ DM density determined by "effective" Boltzmann equation

$$n_{\rm tot} = n_{\rm _{LSP}} + n_{\rm _{NLSP}}$$

$$\sigma_{\rm ann}^{\rm eff} = [\,n_{\rm _{LSP}}^2\,\sigma_{\rm ann}^{\rm _{LSP}} + n_{\rm _{NLSP}}^2\,\sigma_{\rm ann}^{\rm _{NLSP}} + n_{\rm _{LSP}}\,n_{\rm _{NLSP}}\,\sigma_{\rm ann}^{\rm _{LSP-NLSP}}\,]/n_{\rm tot}^2$$

Scenario probed in colliders.

Important to compute DM density accurately!

→ QCD corrections

Higgs enhancement and relic density MSSM-inspired toy model

DM co-annihilating with scalar colour-triplet that has a sizeable coupling to the Higgs

e.g. stop-neutralino co-annihilation scenarios with large A terms

$$\begin{array}{ll} \mathcal{L} & \supset & \frac{1}{2} \overline{\chi^c} \, i \not \! \partial \chi - \frac{1}{2} m_\chi \, \overline{\chi^c} \chi \\ \\ & + & \left[(\partial_\mu + i g_s G_\mu^a T^a) X \right]^\dagger \, \left[(\partial^\mu + i g_s G^{a,\mu} T^a) X \right] - m_X^2 |X|^2 \\ \\ & + & \frac{1}{2} \partial_\mu h \partial^\mu h - \frac{1}{2} m_h^2 h^2 - g_h m_X \, h |X|^2 \\ \\ & + & (\chi \leftrightarrow X, X^\dagger) \ \text{interactions in chemical equilibrium during freeze-out} \end{array}$$

$$lpha_s = rac{g_s^2}{4\pi} \ lpha_h = rac{g_h^2}{16\pi} \
angle$$

Higgs enhancement and relic density MSSM-inspired toy model

$$\boxed{2\text{PI}} = \boxed{\begin{array}{c} & & \\ & & \\ & & \\ \end{array}} h$$

Gluon potential influences the long-range effect of the Higgs!

48

Higgs enhancement and relic density MSSM-inspired toy model

Harz, KP: 1711.03552, 1901.10030

Higgs as a light mediator

Sommerfeld enhancement of direct annihilation

Harz, KP: 1711.03552

Binding of bound states

Harz, KP: 1901.10030

Higgs as a light mediator

Sommerfeld enhancement of direct annihilation 🗸 Harz, KP: 1711.03552

Binding of bound states <

Harz, KP: 1901.10030

Formation of bound states via Higgs (doublet) emission?

Capture via emission of neutral scalar suppressed, due to selection rules: quadruple transitions

KP, Postma, Wiechers: 1505.00109 An, Wise, Zhang: 1606.02305 KP, Postma, de Vries: 1611.01394

Capture via emission of charged scalar [or its Goldstone mode] very very rapid: monopole transitions!

Ko, Matsui, Tang: 1910:04311 Oncala, KP: 1911.02605 Oncala, KP: 2101.08666/7

Sudden change in effective Hamiltonian precipitates transitions. Akin to atomic transitions precipitated by β decay of nucleus.

5. Bound-state formation via emission of a charged scalar

scalar DM X,X^{\dagger} coupled to doubly charged light scalar Φ

$$egin{aligned} \mathcal{L} \supset & -igX^\dagger V^\mu(\partial_\mu X) \ -i2g\Phi^\dagger V^\mu(\partial_\mu \Phi) \ -rac{ym_X}{2}\,XX\Phi^\dagger + h.c. \ & m_X \gg m_\Phi \end{aligned}$$

$$X \longrightarrow X \qquad X \qquad X \qquad X \longrightarrow X \qquad X \longrightarrow X \qquad X \longrightarrow X \qquad X \longrightarrow X \qquad U_{XX^{\dagger}}(r) = -\frac{\alpha_{V}}{r} - (-1)^{\ell} \frac{\alpha_{\Phi}}{r} e^{-m_{\Phi}r}$$

$$U_{_{XX^\dagger}}(r) \; = \; - \, rac{lpha_{_V}}{r} \, - (-1)^\ell \, rac{lpha_{_\Phi}}{r} \, e^{-m_\Phi r}$$

$$X \longrightarrow X = X \longrightarrow X = X \longrightarrow X$$

$$X \longrightarrow X = X \longrightarrow X$$

$$U_{\scriptscriptstyle XX}(r) \; = \; + rac{lpha_{\scriptscriptstyle V}}{r}$$

Change in effective Hamiltonian. Very fast transition!

Oncala, KP: 1911.02605

Oncala, KP: 1911.02605 (see also Ko, Matsui, Tang: 1910: 04311) ⇒ recoupling of DM destruction
when BSF via charged scalar emission considered

Oncala, KP: 1911.02605

Oncala, KP: 1911.02605

6. Bound-state formation via <u>Higgs-doublet</u> emission

Renormalisable Higgs-portal WIMP models

Mass-degenerate **S**inglet-**D**oublet coupled to the Higgs: $L \supset -yDHS$

D & S co-annihilate; freeze-out begins before the EWPT if $M_{DM} > 5$ TeV

Oncala, KP: 2101.08666/7

Renormalisable Higgs-portal WIMP models

Mass-degenerate **S**inglet-**D**oublet coupled to the Higgs: $L \supset -yDHS$

D & S co-annihilate; freeze-out begins before the EWPT if $M_{\scriptscriptstyle DM} > 5 \text{TeV}$

Oncala, KP: 2101.08666/7

Renormalisable Higgs-portal WIMP models

Mass-degenerate **S**inglet-**D**oublet coupled to the Higgs: $L \supset -yDHS$

D & S co-annihilate; freeze-out begins before the EWPT if $M_{DM} > 5 \text{TeV}$

Conclusion (or my ten cents drachmas)

 Bound states impel complete reconsideration of thermal decoupling at / above the TeV scale.

Unitarity limit can be approached / realised only by attractive long-range interactions ⇒ bound states play very important role!

Baldes, KP: 1703.00478

Important experimental implications:

DM heavier than anticipated: multi-TeV probes very important.

- Indirect detection
 - Enhanced rates due to BSF
 - Novel signals: low-energy radiation emitted in BSF
 - Indirect detection of asymmetric DM
- Colliders: improved detection prospects due increased mass gap in coannihilation scenarios

